Abstract:
In this note we consider the nonholonomic problem of rolling without slipping and twisting of an nn-dimensional balanced ball over a fixed sphere.
This is a SO(n)SO(n)–Chaplygin system with an invariant measure that reduces to the cotangent bundle T∗Sn−1T∗Sn−1.
For the rigid body inertia operator Iω=Iω+ωI, I=diag(I1,…,In) with a symmetry I1=I2=⋯=Ir≠Ir+1=Ir+2=⋯=In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for r≠1,n−1 the Chaplygin reducing multiplier method does not apply.
The research was supported by the Serbian Ministry of Science Project 174020, Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems.
Citation:
Božidar Jovanović, “Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108
\Bibitem{Jov19}
\by Bo{\v z}idar~Jovanovi{\'c}
\paper Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
\jour Theor. Appl. Mech.
\yr 2019
\vol 46
\issue 1
\pages 97--108
\mathnet{http://mi.mathnet.ru/tam57}
\crossref{https://doi.org/10.2298/TAM190322003J}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000474911600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072761492}
Linking options:
https://www.mathnet.ru/eng/tam57
https://www.mathnet.ru/eng/tam/v46/i1/p97
This publication is cited in the following 7 articles:
Paula Balseiro, Danilo Machado-Tereza, “Nonholonomic momentum map reduction and a Chaplygin-type foliation”, Nonlinearity, 38:5 (2025), 055006
William Clark, Anthony Bloch, “Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints”, JGM, 15:1 (2023), 256
Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77
Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)
Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems
with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442
Luis C. García-Naranjo, Mats Vermeeren, “Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics”, JCD, 8:3 (2021), 241
Luis C García-Naranjo, Juan C Marrero, “The geometry of nonholonomic Chaplygin systems revisited”, Nonlinearity, 33:3 (2020), 1297