Theoretical and Applied Mechanics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Theor. Appl. Mech.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Theoretical and Applied Mechanics, 2019, Volume 46, Issue 1, Pages 97–108
DOI: https://doi.org/10.2298/TAM190322003J
(Mi tam57)
 

This article is cited in 7 scientific papers (total in 7 papers)

Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization

Božidar Jovanović

Mathematical Institute SANU, Belgrade, Serbia
Full-text PDF (470 kB) Citations (7)
References:
Abstract: In this note we consider the nonholonomic problem of rolling without slipping and twisting of an nn-dimensional balanced ball over a fixed sphere. This is a SO(n)SO(n)–Chaplygin system with an invariant measure that reduces to the cotangent bundle TSn1TSn1. For the rigid body inertia operator Iω=Iω+ωI, I=diag(I1,,In) with a symmetry I1=I2==IrIr+1=Ir+2==In, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for r1,n1 the Chaplygin reducing multiplier method does not apply.
Keywords: nonholonomic Chaplygin systems, invariant measure, integrability.
Funding agency Grant number
Ministry of Education, Science and Technical Development of Serbia 174020
The research was supported by the Serbian Ministry of Science Project 174020, Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems.
Received: 22.03.2019
Revised: 17.04.2019
Bibliographic databases:
Document Type: Article
MSC: 37J60, 37J15, 70E18
Language: English
Citation: Božidar Jovanović, “Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization”, Theor. Appl. Mech., 46:1 (2019), 97–108
Citation in format AMSBIB
\Bibitem{Jov19}
\by Bo{\v z}idar~Jovanovi{\'c}
\paper Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization
\jour Theor. Appl. Mech.
\yr 2019
\vol 46
\issue 1
\pages 97--108
\mathnet{http://mi.mathnet.ru/tam57}
\crossref{https://doi.org/10.2298/TAM190322003J}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000474911600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85072761492}
Linking options:
  • https://www.mathnet.ru/eng/tam57
  • https://www.mathnet.ru/eng/tam/v46/i1/p97
  • This publication is cited in the following 7 articles:
    1. Paula Balseiro, Danilo Machado-Tereza, “Nonholonomic momentum map reduction and a Chaplygin-type foliation”, Nonlinearity, 38:5 (2025), 055006  crossref
    2. William Clark, Anthony Bloch, “Existence of invariant volumes in nonholonomic systems subject to nonlinear constraints”, JGM, 15:1 (2023), 256  crossref
    3. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — a Study of Integrable Cases”, Regul. Chaotic Dyn., 28:1 (2023), 62–77  mathnet  crossref
    4. Vladimir Dragović, Borislav Gajić, Božidar Jovanović, “Gyroscopic Chaplygin Systems and Integrable Magnetic Flows on Spheres”, J Nonlinear Sci, 33:3 (2023)  crossref
    5. Vladimir Dragović, Borislav Gajić, Bozidar Jovanović, “Spherical and Planar Ball Bearings — Nonholonomic Systems with Invariant Measures”, Regul. Chaotic Dyn., 27:4 (2022), 424–442  mathnet  crossref
    6. Luis C. García-Naranjo, Mats Vermeeren, “Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics”, JCD, 8:3 (2021), 241  crossref
    7. Luis C García-Naranjo, Juan C Marrero, “The geometry of nonholonomic Chaplygin systems revisited”, Nonlinearity, 33:3 (2020), 1297  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Theoretical and Applied Mechanics
    Statistics & downloads:
    Abstract page:182
    Full-text PDF :49
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025