Processing math: 100%
Sistemy i Sredstva Informatiki [Systems and Means of Informatics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sistemy i Sredstva Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sistemy i Sredstva Informatiki [Systems and Means of Informatics], 2012, Volume 22, Issue 1, Pages 180–204 (Mi ssi274)  

This article is cited in 3 scientific papers (total in 3 papers)

On nonuniform estimates of the rate of convergence in the central limit theorem

M. E. Grigor'eva, S. V. Popov

M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics
Full-text PDF (319 kB) Citations (3)
References:
Abstract: It is shown that in the nonuniform analog of the Berry–Esseen inequality (1+|x|3)|Fn(xBn)Φ(x)|(C/B3n)nk=1βk, n1, xR, where Fn(x) is the distribution function of the sum of n independent random variables X1,,Xn with $E X_k=0$, $E X_k^2=\sigma_k^2$; $\beta_k=E |X_k|^3<\infty$, k=1,,n; B2n=σ21++σ2n; Φ(x) is the standard normal distribution function, the absolute constant C satisfies the inequality C22.2417.
Keywords: central limit theorem; nonuniform estimate of convergence rate; Berry–Esseen inequality; absolute constant.
Received: 03.06.2012
Document Type: Article
Language: Russian
Citation: M. E. Grigor'eva, S. V. Popov, “On nonuniform estimates of the rate of convergence in the central limit theorem”, Sistemy i Sredstva Inform., 22:1 (2012), 180–204
Citation in format AMSBIB
\Bibitem{GriPop12}
\by M.~E.~Grigor'eva, S.~V.~Popov
\paper On nonuniform estimates of the rate of convergence in the central limit theorem
\jour Sistemy i Sredstva Inform.
\yr 2012
\vol 22
\issue 1
\pages 180--204
\mathnet{http://mi.mathnet.ru/ssi274}
Linking options:
  • https://www.mathnet.ru/eng/ssi274
  • https://www.mathnet.ru/eng/ssi/v22/i1/p180
    See also
    This publication is cited in the following 3 articles:
    1. I. Shevtsova, “On the absolute constants in Nagaev–Bikelis-type inequalities”, Inequalities and Extremal Problems in Probability and Statistics: Selected Topics, ed. I. Pinelis, Academic Press Ltd-Elsevier Science Ltd, 2017, 47–102  crossref  mathscinet  isi  scopus
    2. I. Pinelis, “On the nonuniform Berry–Esseen bound”, Inequalities and Extremal Problems in Probability and Statistics: Selected Topics, ed. I. Pinelis, Academic Press Ltd-Elsevier Science Ltd, 2017, 103–138  crossref  mathscinet  isi  scopus
    3. Grigor'eva M.E., Popov S.V., “An Upper Bound for the Absolute Constant in the Nonuniform Version of the Berry-Esseen Inequalities for Nonidentically Distributed Summands”, Dokl. Math., 86:1 (2012), 524–526  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Системы и средства информатики
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :143
    References:68
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025