Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2024, Volume 65, Number 2, Pages 374–394
DOI: https://doi.org/10.33048/smzh.2024.65.211
(Mi smj7861)
 

Homogenization of the scalar boundary value problem in a thin periodically broken cylinder

S. A. Nazarov, A. S. Slutskij

Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
References:
Abstract: Homogenization of the Neumann problem for a differential equation in a periodically broken multidimensional cylinder leads to a second-order ordinary differential equation. We study asymptotics for the coefficient of the averaged operator in the case of small transverse cross-sections. The main asymptotic term depends on the “area” of cross-sections of the links, their lengths, and the coefficient matrix of the original operator. We find the characteristics of kink zones which affect correction terms, while the asymptotic remainder becomes exponentially small. The justification of the asymptotics is based on Friedrichs's inequality with a coefficient independent of both small parameters: the period of fractures and the relative diameter of cross-sections.
Keywords: asymptotics, homogenization, limit ordinary differential equation, boundary layer, polarization coefficient.
Funding agency Grant number
Russian Science Foundation 22-11-00046
Received: 24.08.2023
Revised: 24.08.2023
Accepted: 28.01.2024
Document Type: Article
UDC: 517.956.22:517.958
MSC: 35R30
Language: Russian
Citation: S. A. Nazarov, A. S. Slutskij, “Homogenization of the scalar boundary value problem in a thin periodically broken cylinder”, Sibirsk. Mat. Zh., 65:2 (2024), 374–394
Citation in format AMSBIB
\Bibitem{NazSlu24}
\by S.~A.~Nazarov, A.~S.~Slutskij
\paper Homogenization of the scalar boundary value problem in a~thin periodically broken cylinder
\jour Sibirsk. Mat. Zh.
\yr 2024
\vol 65
\issue 2
\pages 374--394
\mathnet{http://mi.mathnet.ru/smj7861}
\crossref{https://doi.org/10.33048/smzh.2024.65.211}
Linking options:
  • https://www.mathnet.ru/eng/smj7861
  • https://www.mathnet.ru/eng/smj/v65/i2/p374
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:109
    References:25
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025