Abstract:
We establish that the Fourier series in the Sobolev system of polynomials Pα,βr, with −1<α,β⩽0, associated to the Jacobi polynomials converge uniformly on [−1,1] to functions in the Sobolev space WrL1ρ(α,β), where ρ(α,β) is the Jacobi weight. We show also that the Fourier series converges in the norm of the Sobolev space WrLpρ(A,B) with p>1 under the Muckenhoupt conditions.
Citation:
M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials”, Sibirsk. Mat. Zh., 64:2 (2023), 339–349; Siberian Math. J., 64:2 (2023), 338–346
\Bibitem{Mag23}
\by M.~G.~Magomed-Kasumov
\paper The uniform convergence of Fourier series in a~system of polynomials orthogonal in the sense of Sobolev and associated to Jacobi polynomials
\jour Sibirsk. Mat. Zh.
\yr 2023
\vol 64
\issue 2
\pages 339--349
\mathnet{http://mi.mathnet.ru/smj7765}
\crossref{https://doi.org/10.33048/smzh.2023.64.208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4567668}
\transl
\jour Siberian Math. J.
\yr 2023
\vol 64
\issue 2
\pages 338--346
\crossref{https://doi.org/10.1134/S0037446623020088}
Linking options:
https://www.mathnet.ru/eng/smj7765
https://www.mathnet.ru/eng/smj/v64/i2/p339
This publication is cited in the following 1 articles:
M. G. Magomed-Kasumov, “The uniform convergence of Fourier series in a system of the Sobolev orthogonal polynomials associated to ultraspherical Jacobi polynomials”, Siberian Math. J., 65:6 (2024), 1343–1358