Abstract:
Under study are the problems of existence of the first integrals rational in momenta for a natural mechanical system on the 2-torus. We prove that a rational integral with a linear numerator and denominator reduces to a linear integral. Considering the case of a quadratic numerator and linear denominator, we obtain an analogous result under some additional assumptions on the coefficients of the first integral.
Keywords:
natural mechanical system, rational first integral.
Citation:
S. V. Agapov, “Rational integrals of a natural mechanical system on the 2-torus”, Sibirsk. Mat. Zh., 61:2 (2020), 255–265; Siberian Math. J., 61:2 (2020), 199–207
\Bibitem{Aga20}
\by S.~V.~Agapov
\paper Rational integrals of a~ natural mechanical system on the 2-torus
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 2
\pages 255--265
\mathnet{http://mi.mathnet.ru/smj5979}
\crossref{https://doi.org/10.33048/smzh.2020.61.202}
\elib{https://elibrary.ru/item.asp?id=43305768}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 2
\pages 199--207
\crossref{https://doi.org/10.1134/S0037446620020020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000540148100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85086326504}
Linking options:
https://www.mathnet.ru/eng/smj5979
https://www.mathnet.ru/eng/smj/v61/i2/p255
This publication is cited in the following 8 articles:
Matt Feller, “Generalizing quasicategories via model structures on simplicial sets”, Algebr. Geom. Topol., 25:1 (2025), 357
Jaume Giné, Dmitry I. Sinelshchikov, “On the geometric and analytical properties of the anharmonic oscillator”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107875
Sergey I. Agafonov, Thaís G. P. Alves, “Fractional-linear integrals of geodesic flows on surfaces and Nakai's geodesic 4-webs”, Advances in Geometry, 24:2 (2024), 263
S. V. Agapov, M. M. Tursunov, “O ratsionalnykh integralakh dvumernykh naturalnykh sistem”, Sib. matem. zhurn., 64:4 (2023), 665–674
Sergei Agapov, Alexey Potashnikov, Vladislav Shubin, “Integrable magnetic geodesic flows on 2-surfaces
*”, Nonlinearity, 36:4 (2023), 2128
S. V. Agapov, M. M. Tursunov, “On the Rational Integrals of Two-Dimensional Natural Systems”, Sib Math J, 64:4 (2023), 787
S. Agapov, V. Shubin, “Rational integrals of 2-dimensional geodesic flows: new examples”, J. Geom. Phys., 170 (2021), 104389
S. V. Agapov, “On first integrals of two-dimensional geodesic flows”, Siberian Math. J., 61:4 (2020), 563–574