Abstract:
We construct an additive basis for the relatively free associative algebra F(5)(K) with the Lie nilpotency identity of degree 5 over an infinite domain K containing 16. We prove that approximately half of the elements in F(5)(K) are central. We also prove that the additive group of F(5)(Z) lacks the elements of simple degree ⩾5. We find an asymptotic estimation of the codimension of T-ideal, which is generated by the commutator [x1,x2,…,x5] of degree 5.
Keywords:
Lie nilpotency identity of degree 5, additive basis, central polynomial, kernel polynomial, codimension of a T-ideal.
Citation:
S. V. Pchelintsev, “Construction and applications of an additive basis for the relatively free associative algebra with the lie nilpotency identity of degree 5”, Sibirsk. Mat. Zh., 61:1 (2020), 175–193; Siberian Math. J., 61:1 (2020), 139–153
\Bibitem{Pch20}
\by S.~V.~Pchelintsev
\paper Construction and applications of an additive basis for the relatively free associative algebra with the lie nilpotency identity of degree~5
\jour Sibirsk. Mat. Zh.
\yr 2020
\vol 61
\issue 1
\pages 175--193
\mathnet{http://mi.mathnet.ru/smj5972}
\crossref{https://doi.org/10.33048/smzh.2020.61.112}
\transl
\jour Siberian Math. J.
\yr 2020
\vol 61
\issue 1
\pages 139--153
\crossref{https://doi.org/10.1134/S0037446620010127}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516567300012}
Linking options:
https://www.mathnet.ru/eng/smj5972
https://www.mathnet.ru/eng/smj/v61/i1/p175
This publication is cited in the following 4 articles:
V. I. Glizburg, S. V. Pchelintsev, “O strukture T-prostranstv svobodnoi assotsiativnoi algebry Grassmana ranga 2”, Izv. vuzov. Matem., 2025, no. 3, 17–24
S. V. Pchelintsev, “Structure of the Variety of Alternative Algebras with the Lie-Nilpotency Identity of Degree 5”, Sib Math J, 65:1 (2024), 139
S. V. Pchelintsev, “Stroenie mnogoobraziya alternativnykh algebr s tozhdestvom Li-nilpotentnosti stepeni 5”, Sib. matem. zhurn., 65:1 (2024), 164–179
A. V. Grishin, “The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra”, J. Math. Sci., 269:3 (2023), 322–330