Abstract:
We study finite groups with the following property (∗): All subgroups of odd index are pronormal. Suppose that G has a normal subgroup A with property (∗), and the Sylow 2-subgroups of G/A are self-normalizing. We prove that G has property (∗) if and only if so does NG(T)/T, where T is a Sylow 2-subgroup of A. This leads to a few results that can be used for the classification of finite simple groups with property (∗).
The first author was supported by the NNSF of China (Grant 11771409). The second author was supported
by the President of the Russian Federation (Grant MK-6118.2016.1) and the State Maintenance Program for the
Leading Universities of the Russian Federation (Agreement 02.A03.21.0006 of 27.08.2013). The third author was
supported by the CAS President's International Fellowship Initiative (Grant 2016VMA078) and the Program of
Fundamental Scientific Research of the Siberian Branch of the Russian Academy of Sciences No. I.1.1 (Project 0314-
2016-0001).
Citation:
W. Guo, N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in some extensions of finite groups”, Sibirsk. Mat. Zh., 59:4 (2018), 773–790; Siberian Math. J., 59:4 (2018), 610–622
\Bibitem{GuoMasRev18}
\by W.~Guo, N.~V.~Maslova, D.~O.~Revin
\paper On the pronormality of subgroups of odd index in some extensions of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2018
\vol 59
\issue 4
\pages 773--790
\mathnet{http://mi.mathnet.ru/smj3009}
\crossref{https://doi.org/10.17377/smzh.2018.59.404}
\elib{https://elibrary.ru/item.asp?id=41262627}
\transl
\jour Siberian Math. J.
\yr 2018
\vol 59
\issue 4
\pages 610--622
\crossref{https://doi.org/10.1134/S0037446618040043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443717700004}
\elib{https://elibrary.ru/item.asp?id=35725810}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053003395}
Linking options:
https://www.mathnet.ru/eng/smj3009
https://www.mathnet.ru/eng/smj/v59/i4/p773
This publication is cited in the following 10 articles:
W. Guo, N. V. Maslova, D. O. Revin, “Nonpronormal subgroups of odd index in finite simple linear and unitary groups”, Proc. Steklov Inst. Math. (Suppl.), 325, suppl. 1 (2024), S114–S122
Mingzhu Chen, Ilya Gorshkov, Natalia V. Maslova, Nanying Yang, “On combinatorial properties of Gruenberg–Kegel graphs of finite groups”, Monatsh Math, 2024
Mattia Brescia, Marco Trombetti, “Locally finite simple groups whose non-Abelian subgroups are pronormal”, Communications in Algebra, 51:8 (2023), 3346
N. V. Maslova, D. O. Revin, “On the pronormality of subgroups of odd index in some direct products of finite groups”, J. Algebra Appl., 22:04 (2023)
S. Liu, H. Yu, “A note on pronormal p-subgroups of finite groups”, Mon.heft. Math., 195:1 (2021), 173–176
Guo Wen Bin, A. S. Kondrat'ev, N. V. Maslova, L. Miao, “Finite Groups Whose Maximal Subgroups Are Solvable or Have Prime Power Indices”, Proc. Steklov Inst. Math. (Suppl.), 309, suppl. 1 (2020), S47–S51
A. S. Kondrat'ev, N. V. Maslova, D. O. Revin, “Finite simple exceptional groups of Lie type in which all subgroups of odd index are pronormal”, J. Group Theory, 23:6 (2020), 999–1016
J. Liu, J. Chang, G. Chen, “Finite groups with some pronormal subgroups”, J. Algebra. Appl., 19:6 (2020), 2050110
Anatoly S. Kondrat'ev, Natalia Maslova, Danila Revin, Groups St Andrews 2017 in Birmingham, 2019, 406
Guo W., Revin D.O., “Pronormality and Submaximal (Sic)-Subgroups on Finite Groups”, Commun. Math. Stat., 6:3, SI (2018), 289–317