Abstract:
We study the simple right alternative superalgebras whose even part is trivial; i.e., the even part has zero product. A simple right alternative superalgebra with the trivial even part is singular. The first example of a singular superalgebra was given in [1]. The least dimension of a singular superalgebra is 5. We prove that the singular 5-dimensional superalgebras are isomorphic if and only if suitable quadratic forms are equivalent. In particular, there exists a unique singular 5-dimensional superalgebra up to isomorphism over an algebraically closed field.
Keywords:
simple superalgebra, singular superalgebra, right alternative superalgebra.
Citation:
S. V. Pchelintsev, O. V. Shashkov, “Simple 5-dimensional right alternative superalgebras with trivial even part”, Sibirsk. Mat. Zh., 58:6 (2017), 1387–1400; Siberian Math. J., 58:6 (2017), 1078–1089
\Bibitem{PchSha17}
\by S.~V.~Pchelintsev, O.~V.~Shashkov
\paper Simple $5$-dimensional right alternative superalgebras with trivial even part
\jour Sibirsk. Mat. Zh.
\yr 2017
\vol 58
\issue 6
\pages 1387--1400
\mathnet{http://mi.mathnet.ru/smj2946}
\crossref{https://doi.org/10.17377/smzh.2017.58.617}
\elib{https://elibrary.ru/item.asp?id=30556285}
\transl
\jour Siberian Math. J.
\yr 2017
\vol 58
\issue 6
\pages 1078--1089
\crossref{https://doi.org/10.1134/S0037446617060179}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000425153500017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85042165591}
Linking options:
https://www.mathnet.ru/eng/smj2946
https://www.mathnet.ru/eng/smj/v58/i6/p1387
This publication is cited in the following 9 articles:
S. V. Pchelintsev, “On Classification of the Right-Alternative Singular 10-Dimensional Superalgebras of Diagonal Type”, Sib Math J, 66:1 (2025), 78
Sergey Pchelintsev, Oleg Shashkov, “A finite-dimensional singular superalgebra is algebraically generated”, Journal of Algebra, 645 (2024), 86
S. V. Pchelintsev, O. V. Shashkov, “Structure of Singular Superalgebras with 2-Dimensional Even Part and New Examples of Singular Superalgebras”, Algebra Logic, 61:6 (2023), 506
S. V. Pchelintsev, O. V. Shashkov, “Simple right alternative superalgebras”, J. Math. Sci., 284:4 (2024), 527–544
S. V. Pchelintsev, O. V. Shashkov, “Stroenie singulyarnykh superalgebr s $2$-mernoi chetnoi chastyu i novye primery singulyarnykh superalgebr”, Algebra i logika, 61:6 (2022), 742–765
S. V. Pchelintsev, O. V. Shashkov, “Algebraically generated superalgebras”, Russian Math. (Iz. VUZ), 65:6 (2021), 57–72
S. V. Pchelintsev, O. V. Shashkov, “Linearly generated singular superalgebras”, J. Algebra, 546 (2020), 580–603
S. V. Pchelintsev, O. V. Shashkov, “Singulyarnye 6-mernye superalgebry”, Sib. elektron. matem. izv., 15 (2018), 92–105
V. N. Zhelyabin, “Structure of some unital simple Jordan superalgebras with associative even part”, Siberian Math. J., 59:6 (2018), 1051–1062