|
Behavior of the Fourier–Walsh coefficients of a corrected function
L. N. Galoyan, R. G. Melikbekyan Faculty of Physics, Yerevan State University, Yerevan, Armenia
Abstract:
We prove that, given a sequence $\{a_k\}^\infty_{k=1}$ with $a_k\downarrow0$ and $\{a_k\}^\infty_{k=1}\not\in l_2$, reals $0<\epsilon<1$ and $p\in[1,2]$, and $f\in L^p(0,1)$, we can find $\tilde f\in L^p(0,1)$ with $\operatorname{mes}\{f\ne\tilde f\}<\epsilon$ whose nonzero Fourier–Walsh coefficients $c_k(\tilde f)$ are such that $|c_k(\tilde f)|=a_k$ for $k\in\operatorname{spec}(\tilde f)$.
Keywords:
Fourier coefficients, Walsh system, $L^p(0,1)$ space.
Received: 30.09.2015
Citation:
L. N. Galoyan, R. G. Melikbekyan, “Behavior of the Fourier–Walsh coefficients of a corrected function”, Sibirsk. Mat. Zh., 57:3 (2016), 641–649; Siberian Math. J., 57:3 (2016), 505–512
Linking options:
https://www.mathnet.ru/eng/smj2769 https://www.mathnet.ru/eng/smj/v57/i3/p641
|
Statistics & downloads: |
Abstract page: | 307 | Full-text PDF : | 70 | References: | 50 | First page: | 25 |
|