Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2016, Volume 57, Number 1, Pages 98–112
DOI: https://doi.org/10.17377/smzh.2016.57.108
(Mi smj2731)
 

This article is cited in 10 scientific papers (total in 10 papers)

Constant coefficient linear difference equations on the rational cones of the integer lattice

E. K. Leĭnartasa, T. I. Nekrasova

a Siberian Federal University, Krasnoyarsk, Russia
References:
Abstract: We obtain a sufficient solvability condition for Cauchy problems for a polynomial difference operator with constant coefficients. We prove that if the generating function of the Cauchy data of a homogeneous Cauchy problem lies in one of the classes of Stanley's hierarchy then the generating function of the solution belongs to the same class.
Keywords: higher-dimensional difference equations, Cauchy problem, generating function, D-finite Laurent series.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.Y26.31.0006
Russian Foundation for Basic Research 14-01-00-544
This research was done at Siberian Federal University and supported by the Government of the Russian Federation (Grant 14.Y26.31.0006). The first author was also supported by the Russian Foundation for Basic Research (Grant 14-01-00-544).
Received: 10.11.2014
English version:
Siberian Mathematical Journal, 2016, Volume 57, Issue 1, Pages 74–85
DOI: https://doi.org/10.1134/S0037446616010080
Bibliographic databases:
Document Type: Article
UDC: 517.55+517.96
Language: Russian
Citation: E. K. Leǐnartas, T. I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Sibirsk. Mat. Zh., 57:1 (2016), 98–112; Siberian Math. J., 57:1 (2016), 74–85
Citation in format AMSBIB
\Bibitem{LeiNek16}
\by E.~K.~Le{\v\i}nartas, T.~I.~Nekrasova
\paper Constant coefficient linear difference equations on the rational cones of the integer lattice
\jour Sibirsk. Mat. Zh.
\yr 2016
\vol 57
\issue 1
\pages 98--112
\mathnet{http://mi.mathnet.ru/smj2731}
\crossref{https://doi.org/10.17377/smzh.2016.57.108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3499854}
\elib{https://elibrary.ru/item.asp?id=26236932}
\transl
\jour Siberian Math. J.
\yr 2016
\vol 57
\issue 1
\pages 74--85
\crossref{https://doi.org/10.1134/S0037446616010080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373234400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85008502163}
Linking options:
  • https://www.mathnet.ru/eng/smj2731
  • https://www.mathnet.ru/eng/smj/v57/i1/p98
  • This publication is cited in the following 10 articles:
    1. S. Chandragiri, “Riordan Arrays and Difference Equations of Subdiagonal Lattice Paths”, Sib Math J, 65:2 (2024), 411  crossref
    2. A. B. Leinartene, A. P. Lyapin, “Applying Computer Algebra Systems to Study Chaundy-Bullard Identities for the Vector Partition Function with Weight”, Program Comput Soft, 50:2 (2024), 176  crossref
    3. A. B. Leinartene, A. P. Lyapin, “Applying computer algebra systems to study Chaundy-Bullard identities for the vector partition function with weight”, Programmirovanie, 2024, no. 2, 79  crossref
    4. Luis M. Sánchez-Ruiz, Sanjib Kumar Datta, Nityagopal Biswas, Matilde Legua, “Picturing the Growth Order of Solutions in Complex Linear Differential–Difference Equations with Coefficients of φ-Order”, Axioms, 12:3 (2023), 239  crossref
    5. E. K. Leinartas, T. I. Yakovleva, “Proizvodyaschaya funktsiya resheniya raznostnogo uravneniya i mnogogrannik Nyutona kharakteristicheskogo mnogochlena”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 40 (2022), 3–14  mathnet  crossref
    6. A. P. Lyapin, T. Cuchta, “Sections of the generating series of a solution to a difference equation in a simplicial cone”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 42 (2022), 75–89  mathnet  crossref
    7. A. P. Lyapin, Sreelatha Chandragiri, “the Cauchy Problem For Multidimensional Difference Equations in Lattice Cones”, J. Sib. Fed. Univ.-Math. Phys., 13:2 (2020), 187–196  mathnet  crossref  mathscinet  zmath  isi
    8. E. K. Leinartas, T. I. Yakovleva, “The Cauchy problem for multidimensional difference equations and the preservation of the hierarchy of generating functions of its solutions”, Zhurn. SFU. Ser. Matem. i fiz., 11:6 (2018), 712–722  mathnet  crossref  mathscinet  isi  scopus
    9. E. K. Leinartas, T. I. Yakovleva, “On formal solutions of hormander's initial-boundary value problem in the class of laurent series”, J. Sib. Fed. Univ.-Math. Phys., 11:3 (2018), 278–285  mathnet  crossref  mathscinet  isi  scopus
    10. O. A. Shishkina, “Mnogochleny Bernulli ot neskolkikh peremennykh i summirovanie monomov po tselym tochkam ratsionalnogo parallelotopa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 16 (2016), 89–101  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:433
    Full-text PDF :123
    References:86
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025