Abstract:
We give sufficient conditions ensuring a construction of solution to the equation
$$
\sum^m_{k=0}P_k(\sigma)\lambda^ku(\lambda)=f(\lambda),
$$
with $\sigma\in\mathbb R^n$ and $\lambda\in G\subset\mathbb C$, where $f(\lambda) and u(\lambda)$are tempered distributions depending holomorphically on $\lambda$, while the polynomial $P_m(\sigma)$ may have real zeros.
Citation:
A. L. Pavlov, “On the division problem for a tempered distribution that depends holomorphically on a parameter”, Sibirsk. Mat. Zh., 56:5 (2015), 1130–1141; Siberian Math. J., 56:5 (2015), 901–911