Typesetting math: 100%
Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 2, Pages 249–264 (Mi smj2636)  

This article is cited in 7 scientific papers (total in 7 papers)

Approximability of generalized free products of groups with amalgamated normal subgroup by some classes of finite groups

D. N. Azarov

Ivanovo State University, Ivanovo, Russia
Full-text PDF (367 kB) Citations (7)
References:
Abstract: Let G be a free product of almost soluble groups A and B of finite rank with amalgamated normal subgroup H, where HA and HB, and let π be a finite set of primes. We prove that G is an almost residually finite π-group if and only if so are A,B,A/H, and B/H.
Keywords: generalized free product, soluble group, residual finiteness, almost residually finite p-group.
Received: 27.03.2014
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 2, Pages 206–216
DOI: https://doi.org/10.1134/S0037446615020020
Bibliographic databases:
Document Type: Article
UDC: 512.543
Language: Russian
Citation: D. N. Azarov, “Approximability of generalized free products of groups with amalgamated normal subgroup by some classes of finite groups”, Sibirsk. Mat. Zh., 56:2 (2015), 249–264; Siberian Math. J., 56:2 (2015), 206–216
Citation in format AMSBIB
\Bibitem{Aza15}
\by D.~N.~Azarov
\paper Approximability of generalized free products of groups with amalgamated normal subgroup by some classes of finite groups
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 2
\pages 249--264
\mathnet{http://mi.mathnet.ru/smj2636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3381238}
\elib{https://elibrary.ru/item.asp?id=23112837}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 2
\pages 206--216
\crossref{https://doi.org/10.1134/S0037446615020020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353794200002}
\elib{https://elibrary.ru/item.asp?id=24027178}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928784874}
Linking options:
  • https://www.mathnet.ru/eng/smj2636
  • https://www.mathnet.ru/eng/smj/v56/i2/p249
  • This publication is cited in the following 7 articles:
    1. D. R. Baranov, E. V. Sokolov, “On the Separability of Abelian Subgroups of the Generalized Free Product of Two Groups with Normal Amalgamated Subgroup”, Sib Math J, 66:2 (2025), 262  crossref
    2. E.V. Sokolov, “On the residual nilpotence of generalized free products of groups”, Journal of Algebra, 657 (2024), 292  crossref
    3. D. N. Azarov, “On the virtual potency of some groups and free constructions”, Siberian Math. J., 63:6 (2022), 1023–1033  mathnet  crossref  crossref
    4. E. V. Sokolov, E. A. Tumanova, “On the root-class residuality of certain free products of groups with normal amalgamated subgroups”, Russian Math. (Iz. VUZ), 64:3 (2020), 43–56  mathnet  crossref  crossref  isi
    5. D. N. Azarov, “On the weak π-potency of some groups and free products”, Siberian Math. J., 61:6 (2020), 953–962  mathnet  crossref  crossref  isi  elib
    6. A. E. Kuvaev, E. V. Sokolov, “Necessary conditions of the approximability of generalized free products and HNN-extensions”, Russian Math. (Iz. VUZ), 61:9 (2017), 32–42  mathnet  crossref  isi
    7. D. V. Goltsov, “Approksimiruemost fundamentalnoi gruppy konechnogo grafa grupp kornevym klassom grupp”, Chebyshevskii sb., 17:3 (2016), 64–71  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :76
    References:65
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025