Abstract:
We use a new method to prove the Sobolev embedding theorem for functions on a metric space and study other questions of the theory of Sobolev spaces on a metric space. We prove the existence and uniqueness of solution to a variational problem.
Keywords:
Sobolev classes, Nikol'skiĭ classes, functions on a metric space, embedding theorems, compactness of the embedding, variational problem.
Citation:
N. N. Romanovskiǐ, “Embedding theorems and a variational problem for functions on a metric measure space”, Sibirsk. Mat. Zh., 55:3 (2014), 627–649; Siberian Math. J., 55:3 (2014), 511–529
\Bibitem{Rom14}
\by N.~N.~Romanovski{\v\i}
\paper Embedding theorems and a~variational problem for functions on a~metric measure space
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 3
\pages 627--649
\mathnet{http://mi.mathnet.ru/smj2559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237379}
\elib{https://elibrary.ru/item.asp?id=21800679}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 3
\pages 511--529
\crossref{https://doi.org/10.1134/S0037446614030136}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338502400013}
\elib{https://elibrary.ru/item.asp?id=24061968}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903316780}
Linking options:
https://www.mathnet.ru/eng/smj2559
https://www.mathnet.ru/eng/smj/v55/i3/p627
This publication is cited in the following 4 articles:
N. N. Romanovskii, “Ob obobscheniyakh klassov Soboleva na metricheskii i topologicheskii sluchai”, Izv. vuzov. Matem., 2024, no. 11, 97–104
N. N. Romanovsky, “Generalizations of Sobolev Classes to the Metric and Topological Cases”, Russ Math., 68:11 (2024), 84
N. N. Romanovskii, “Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures”, Moscow University Mathematics Bulletin, 77:1 (2022), 27–40
N. N. Romanovskiǐ, “Sobolev embedding theorems and generalizations for functions on a metric measure space”, Siberian Math. J., 59:1 (2018), 126–135