Abstract:
Given a set π of prime numbers, we define the class Pπ of all finite groups in which Hall π-subgroups exist and are pronormal by analogy with the Hall classes Eπ, Cπ and Dπ. We study whether Pπ is closed under the main class-theoretic closure operations. In particular, we establish that Pπ is a saturated formation.
Keywords:
finite group, Hall subgroup, pronormal subgroup, class of finite groups, properties Eπ, Cπ and Dπ, property Pπ, class-theoretic closure operations, formation, saturated formation, Fitting class.
Citation:
W. Guo, D. O. Revin, “On the class of groups with pronormal Hall π-subgroups”, Sibirsk. Mat. Zh., 55:3 (2014), 509–524; Siberian Math. J., 55:3 (2014), 415–427
\Bibitem{GuoRev14}
\by W.~Guo, D.~O.~Revin
\paper On the class of groups with pronormal Hall $\pi$-subgroups
\jour Sibirsk. Mat. Zh.
\yr 2014
\vol 55
\issue 3
\pages 509--524
\mathnet{http://mi.mathnet.ru/smj2549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3237369}
\elib{https://elibrary.ru/item.asp?id=21800668}
\transl
\jour Siberian Math. J.
\yr 2014
\vol 55
\issue 3
\pages 415--427
\crossref{https://doi.org/10.1134/S0037446614030033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338502400003}
\elib{https://elibrary.ru/item.asp?id=24061837}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903278597}
Linking options:
https://www.mathnet.ru/eng/smj2549
https://www.mathnet.ru/eng/smj/v55/i3/p509
This publication is cited in the following 6 articles:
Guo Wen Bin, A. A. Buturlakin, D. O. Revin, “Equivalence of the existence of nonconjugate and nonisomorphic Hall π-subgroups”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 94–99
W. Guo, D. O. Revin, “Pronormality and submaximal X-subgroups on finite groups”, Commun. Math. Stat., 6:3, SI (2018), 289–317
W. Guo, D. O. Revin, “Classification and properties of the π-submaximal subgroups in minimal nonsolvable groups”, Bull. Math. Sci., 8:2 (2018), 325–351
M. N. Nesterov, “On pronormality and strong pronormality of Hall subgroups”, Siberian Math. J., 58:1 (2017), 128–133
E. P. Vdovin, M. N. Nesterov, D. O. Revin, “Pronormality of Hall subgroups in their normal closure”, Algebra and Logic, 56:6 (2018), 451–457
E. P. Vdovin, D. O. Revin, “The existence of pronormal π-Hall subgroups in Eπ-groups”, Siberian Math. J., 56:3 (2015), 379–383