Abstract:
We prove that each exceptional differentiably simple Jordan algebra over a field of characteristic 0 is an Albert ring whose elements satisfy a cubic equation with the coefficients in the center of the algebra. If the characteristic of the field is greater than 2 then such an algebra is the tensor product of its center and a central exceptional simple 27-dimensional Jordan algebra. Some remarks made on special algebras.
Keywords:
Jordan algebra, derivation, differentiably simple algebra.
This publication is cited in the following 6 articles:
I. Kaygorodov, A. Lopatin, Yu. Popov, “The structure of simple noncommutative Jordan superalgebras”, Mediterr. J. Math., 15:2 (2018), 33
I. Kaygorodov, A. Lopatin, Yu. Popov, “Jordan algebras admitting derivations with invertible values”, Commun. Algebr., 46:1 (2018), 69–81
I. Kaygorodov, Yu. Popov, “A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations”, J. Algebra, 456 (2016), 323–347
I. Kaygorodov, A. Lopatin, Yu. Popov, “Conservative algebras of 2-dimensional algebras”, Linear Alg. Appl., 486 (2015), 255–274
I. B. Kaygorodov, Yu. S. Popov, “Alternative algebras admitting derivations with invertible values and invertible derivations”, Izv. Math., 78:5 (2014), 922–936
V. N. Zhelyabin, M. E. Goncharov, “Primer differentsialno prostoi algebry Li, ne yavlyayuscheisya svobodnym modulem nad svoim tsentroidom”, Sib. elektron. matem. izv., 11 (2014), 915–920