Abstract:
Suppose that every finite subgroup, generated by a couple of 2-elements of a periodic group, is either nilpotent of class 2 or of exponent 4. We prove that the group possesses the normal Sylow 2-subgroup that is either nilpotent of class 2 or of exponent 4.
Citation:
D. V. Lytkina, V. D. Mazurov, “On groups with given properties of the finite subgroups generated by couples of 2-elements”, Sibirsk. Mat. Zh., 54:1 (2013), 127–130; Siberian Math. J., 54:1 (2013), 96–98
\Bibitem{LytMaz13}
\by D.~V.~Lytkina, V.~D.~Mazurov
\paper On groups with given properties of the finite subgroups generated by couples of $2$-elements
\jour Sibirsk. Mat. Zh.
\yr 2013
\vol 54
\issue 1
\pages 127--130
\mathnet{http://mi.mathnet.ru/smj2406}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3089332}
\transl
\jour Siberian Math. J.
\yr 2013
\vol 54
\issue 1
\pages 96--98
\crossref{https://doi.org/10.1134/S0037446613010126}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315735500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874573181}
Linking options:
https://www.mathnet.ru/eng/smj2406
https://www.mathnet.ru/eng/smj/v54/i1/p127
This publication is cited in the following 1 articles:
A. A. Duzh, D. V. Lytkina, “Periodic groups saturated with direct products of Suzuki groups and elementary abelian 2-groups”, Siberian Math. J., 54:5 (2013), 805–809