Abstract:
Under certain conditions on the magnetic and electric potentials, we prove that the corresponding one-dimensional magnetic Schrödinger operator on the whole axis is selfadjoint and establish that Fredholm theory is applicable to the resolvent equation of this operator.
Keywords:
magnetic Schrödinger operator, quantum mechanics, magnetic potential, electric potential, resolvent equatio.
Citation:
A. R. Aliev, E. H. Eyvazov, “The resolvent equation of the one-dimensional Schrödinger operator on the whole axis”, Sibirsk. Mat. Zh., 53:6 (2012), 1201–1208; Siberian Math. J., 53:6 (2012), 957–964
\Bibitem{AliEiv12}
\by A.~R.~Aliev, E.~H.~Eyvazov
\paper The resolvent equation of the one-dimensional Schr\"odinger operator on the whole axis
\jour Sibirsk. Mat. Zh.
\yr 2012
\vol 53
\issue 6
\pages 1201--1208
\mathnet{http://mi.mathnet.ru/smj2376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074434}
\elib{https://elibrary.ru/item.asp?id=18838172}
\transl
\jour Siberian Math. J.
\yr 2012
\vol 53
\issue 6
\pages 957--964
\crossref{https://doi.org/10.1134/S0037446612060018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312906500001}
\elib{https://elibrary.ru/item.asp?id=20682447}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871689421}
Linking options:
https://www.mathnet.ru/eng/smj2376
https://www.mathnet.ru/eng/smj/v53/i6/p1201
This publication is cited in the following 4 articles:
O. O. Pokutnyi, “Boundary-Value Problems for the Evolutionary Schrödinger Equation. I”, J Math Sci, 249:4 (2020), 647
El-Raheem Z.F.A., Salama F.A., “the Inverse Scattering Problem of Some Schrodinger Type Equation With Turning Point”, Bound. Value Probl., 2015, 57
Eyvazov E.H., “on the Properties of the Resolvent of Two-Dimensional Magnetic Schrodinger Operator”, Azerbaijan J. Math., 5:1 (2015), 13–28
A. A. Pokutnyi, “Representation of the Solutions of Boundary-value Problems for the Schrödinger Equation in a Hilbert Space”, J Math Sci, 205:6 (2015), 821