Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 1993, Volume 34, Number 1, Pages 47–64 (Mi smj1694)  

This article is cited in 11 scientific papers (total in 11 papers)

The Cauchy problem for certain degenerate quasilinear parabolic equations with absorption

A. L. Gladkov
Abstract: The Cauchy problem for the equation
ut=Δ(|u|μ1u)c|u|ν1u,
where μ>1, ν>1, and c>0, with initial data
u(0,x)=u0(x).
is considered in the halfspace Rn+1+. A growth of the initial function at infinity is admitted. For various relations between μ and ν, existence and uniqueness theorems for (1), (2) in classes of increasing functions are proved. Examples are given which indicate that the results obtained are exact in a sense.
Received: 10.10.1991
English version:
Siberian Mathematical Journal, 1993, Volume 34, Issue 1, Pages 37–54
DOI: https://doi.org/10.1007/BF00971239
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: A. L. Gladkov, “The Cauchy problem for certain degenerate quasilinear parabolic equations with absorption”, Sibirsk. Mat. Zh., 34:1 (1993), 47–64; Siberian Math. J., 34:1 (1993), 37–54
Citation in format AMSBIB
\Bibitem{Gla93}
\by A.~L.~Gladkov
\paper The Cauchy problem for certain degenerate quasilinear parabolic equations with absorption
\jour Sibirsk. Mat. Zh.
\yr 1993
\vol 34
\issue 1
\pages 47--64
\mathnet{http://mi.mathnet.ru/smj1694}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1216834}
\zmath{https://zbmath.org/?q=an:0841.35055}
\transl
\jour Siberian Math. J.
\yr 1993
\vol 34
\issue 1
\pages 37--54
\crossref{https://doi.org/10.1007/BF00971239}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KZ84700005}
Linking options:
  • https://www.mathnet.ru/eng/smj1694
  • https://www.mathnet.ru/eng/smj/v34/i1/p47
  • This publication is cited in the following 11 articles:
    1. Razvan Gabriel Iagar, Philippe Laurençot, Ariel Sánchez, “Self-similar shrinking of supports and non-extinction for a nonlinear diffusion equation with spatially inhomogeneous strong absorption”, Commun. Contemp. Math., 26:06 (2024)  crossref
    2. N. M. Bokalo, “Correctness of the first boundary-value problem and the Cauchy problem for some quasilinear parabolic systems without conditions at infinity”, J. Math. Sci. (N. Y.), 135:1 (2006), 2625–2636  mathnet  crossref  mathscinet  zmath
    3. Gladkov A., Guedda M., “Diffusion–absorption equation without growth restrictions on the data at infinity”, Journal of Mathematical Analysis and Applications, 274:1 (2002), 16–37  crossref  mathscinet  zmath  isi
    4. Kosygina E., “On the Cauchy problem for the generalized porous medium equation”, Communications in Partial Differential Equations, 26:5–6 (2001), 841–858  crossref  mathscinet  zmath  isi
    5. Gladkov A.L., “The filtration–absorption equation with a variable coefficient”, Differential Equations, 37:1 (2001), 45–50  mathnet  crossref  mathscinet  zmath  isi
    6. A. L. Gladkov, “Behaviour of solutions of certain quasilinear parabolic equations with power-type non-linearities”, Sb. Math., 191:3 (2000), 341–358  mathnet  crossref  crossref  mathscinet  zmath  isi
    7. A. L. Gladkov, “Unbounded solutions of the nonlinear heat-conduction equation with strong convection at infinity”, Comput. Math. Math. Phys., 36:10 (1996), 1381–1391  mathnet  mathscinet  zmath  isi
    8. Gladkov A.L., “The Cauchy problem for the porous medium equation with strong convection in infinity”, Doklady Akademii Nauk Belarusi, 40:6 (1996), 27–30  mathscinet  zmath  isi
    9. A. L. Gladkov, “The Cauchy problem in classes of increasing functions for the equation of filtration with convection”, Sb. Math., 186:6 (1995), 803–825  mathnet  crossref  mathscinet  zmath  isi
    10. Gladkov A.L., “The Cauchy–Problem for the Porous–Medium Equation with Convection”, Doklady Akademii Nauk Belarusi, 39:3 (1995), 27–30  mathscinet  isi
    11. Kalashnikov A.S., “On Quasi–Linear Degenerating Parabolic Equations with Singular Lower–Order Terms and Growing Initial Values”, Differential Equations, 29:6 (1993), 857–866  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:392
    Full-text PDF :120
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025