Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2004, Volume 45, Number 2, Pages 274–294 (Mi smj1068)  

This article is cited in 12 scientific papers (total in 12 papers)

Asymptotics and estimates of the convergence rate in a three-dimensional boundary-value problem with rapidly alternating boundary conditions

D. I. Borisov

Bashkir State Pedagogical University
References:
Abstract: We consider a singularly perturbed boundary-value eigenvalue problem for the Laplace operator in a cylinder with rapidly alternating type of the boundary condition on the lateral surface. The change of the boundary conditions is realized by splitting the lateral surface into many narrow strips on which the Dirichlet and Neumann conditions alternate. We study the case in which the averaged problem contains the Dirichlet boundary condition on the lateral surface. In the case of strips with slowly varying width we construct the first terms of the asymptotic expansions of eigenfunctions; moreover, in the case of strips with rapidly varying width we obtain estimates for the convergence rate.
Keywords: asymptotics, singular perturbation, Laplace operator.
Received: 02.09.2002
English version:
Siberian Mathematical Journal, 2004, Volume 45, Issue 2, Pages 222–240
DOI: https://doi.org/10.1023/B:SIMJ.0000021279.02604.27
Bibliographic databases:
UDC: 517.956
Language: Russian
Citation: D. I. Borisov, “Asymptotics and estimates of the convergence rate in a three-dimensional boundary-value problem with rapidly alternating boundary conditions”, Sibirsk. Mat. Zh., 45:2 (2004), 274–294; Siberian Math. J., 45:2 (2004), 222–240
Citation in format AMSBIB
\Bibitem{Bor04}
\by D.~I.~Borisov
\paper Asymptotics and estimates of the convergence rate in a three-dimensional boundary-value problem with rapidly alternating boundary conditions
\jour Sibirsk. Mat. Zh.
\yr 2004
\vol 45
\issue 2
\pages 274--294
\mathnet{http://mi.mathnet.ru/smj1068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2061410}
\zmath{https://zbmath.org/?q=an:1108.35032}
\elib{https://elibrary.ru/item.asp?id=14455213}
\transl
\jour Siberian Math. J.
\yr 2004
\vol 45
\issue 2
\pages 222--240
\crossref{https://doi.org/10.1023/B:SIMJ.0000021279.02604.27}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220959600003}
Linking options:
  • https://www.mathnet.ru/eng/smj1068
  • https://www.mathnet.ru/eng/smj/v45/i2/p274
  • This publication is cited in the following 12 articles:
    1. D. I. Borisov, “Asymptotic Analysis of Boundary-Value Problems for the Laplace Operator with Frequently Alternating Type of Boundary Conditions”, J Math Sci, 277:6 (2023), 841  crossref
    2. D. I. Borisov, M. N. Konyrkulzhaeva, “Operator L2-Estimates for Two-Dimensional Problems with Rapidly Alternating Boundary Conditions”, J Math Sci, 267:3 (2022), 319  crossref
    3. D. I. Borisov, “Asimptoticheskii analiz kraevykh zadach dlya operatora Laplasa s chastoi smenoi tipa granichnykh uslovii”, Differentsialnye uravneniya s chastnymi proizvodnymi, SMFN, 67, no. 1, Rossiiskii universitet druzhby narodov, M., 2021, 14–129  mathnet  crossref
    4. Chechkina A.G., D'Apice C., De Maio U., “Rate of Convergence of Eigenvalues to Singularly Perturbed Steklov-Type Problem For Elasticity System”, Appl. Anal., 98:1-2, SI (2019), 32–44  crossref  mathscinet  zmath  isi  scopus
    5. Najar H., “Lifshitz Tails For Quantum Waveguides With Random Boundary Conditions”, Math. Phys. Anal. Geom., 22:3 (2019), 17  crossref  mathscinet  zmath  isi  scopus
    6. A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81:1 (2017), 199–236  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29  mathnet
    8. V. A. Sadovnichii, A. G. Chechkina, “Ob otsenke sobstvennykh funktsii zadachi tipa Steklova s malym parametrom v sluchae predelnogo vyrozhdeniya spektra”, Ufimsk. matem. zhurn., 3:3 (2011), 127–139  mathnet  zmath
    9. Najar H., Olendski O., “Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs”, J. Phys. A: Math. Theor., 44:30 (2011), 305304  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Olendski O., Mikhailovska L., “Theory of a curved planar waveguide with Robin boundary conditions”, Physical Review E, 81:3, Part 2 (2010), 036606  crossref  adsnasa  isi  elib  scopus
    11. A. G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, J Math Sci, 162:3 (2009), 443  crossref
    12. D. I. Borisov, “On a problem with nonperiodic frequent alternation of boundary conditions imposed on fast oscillating sets”, Comput. Math. Math. Phys., 46:2 (2006), 271–281  mathnet  crossref  mathscinet  zmath  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
    Statistics & downloads:
    Abstract page:434
    Full-text PDF :130
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025