Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2021, Volume 212, Issue 8, Pages 1040–1067
DOI: https://doi.org/10.1070/SM9433
(Mi sm9433)
 

This article is cited in 5 scientific papers (total in 5 papers)

Simple closed geodesics on regular tetrahedra in spherical space

A. A. Borisenko, D. D. Sukhorebska

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkiv, Ukraine
References:
Abstract: We prove that there are finitely many simple closed geodesics on regular tetrahedra in spherical space. Also, for any pair of coprime positive integers (p,q), we find constants α1 and α2 depending on p and q and satisfying the inequality π/3<α1<α2<2π/3, such that a regular spherical tetrahedron with planar angle α(π/3,α1) has a unique simple closed geodesic of type (p,q), up to tetrahedron isometry, whilst a regular spherical tetrahedron with planar angle α(α2,2π/3) has no such geodesic.
Bibliography: 19 titles.
Keywords: closed geodesics, regular tetrahedron, spherical space.
Received: 28.04.2020
Bibliographic databases:
Document Type: Article
UDC: 514.132+514.774.8
MSC: 51M10, 52A55
Language: English
Original paper language: Russian
Citation: A. A. Borisenko, D. D. Sukhorebska, “Simple closed geodesics on regular tetrahedra in spherical space”, Sb. Math., 212:8 (2021), 1040–1067
Citation in format AMSBIB
\Bibitem{BorSuk21}
\by A.~A.~Borisenko, D.~D.~Sukhorebska
\paper Simple closed geodesics on regular tetrahedra in spherical space
\jour Sb. Math.
\yr 2021
\vol 212
\issue 8
\pages 1040--1067
\mathnet{http://mi.mathnet.ru/eng/sm9433}
\crossref{https://doi.org/10.1070/SM9433}
\zmath{https://zbmath.org/?q=an:1477.51020}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021SbMat.212.1040B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000707459800001}
\elib{https://elibrary.ru/item.asp?id=47524738}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118828365}
Linking options:
  • https://www.mathnet.ru/eng/sm9433
  • https://doi.org/10.1070/SM9433
  • https://www.mathnet.ru/eng/sm/v212/i8/p3
  • This publication is cited in the following 5 articles:
    1. Vladimir Yu. Protasov, “Simple Closed Geodesics on a Polyhedron”, Math Intelligencer, 2024  crossref
    2. Edward Bormashenko, “Riemannian Manifolds, Closed Geodesic Lines, Topology and Ramsey Theory”, Mathematics, 12:20 (2024), 3206  crossref
    3. A. Borisenko, V. Miquel, “Geodesic loops on tetrahedra in spaces of constant sectional curvature”, Acta Math. Hungar., 2024  crossref
    4. A. A. Borisenko, “A necessary and sufficient condition for the existence of simple closed geodesics on regular tetrahedra in spherical space”, Sb. Math., 213:2 (2022), 161–172  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    5. D. Sukhorebska, “Simple closed geodesics on regular tetrahedra in spaces of constant curvature”, J. Math. Phys. Anal. Geom., 18:4 (2022), 562–610  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:376
    Russian version PDF:131
    English version PDF:200
    Russian version HTML:161
    References:39
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025