Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2020, Volume 211, Issue 2, Pages 161–200
DOI: https://doi.org/10.1070/SM9240
(Mi sm9240)
 

This article is cited in 4 scientific papers (total in 4 papers)

Étale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in P5

K. Banerjeea, V. Guletskiĭb

a Harish-Chandra Research Institute, Allahabad, India
b Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
References:
Abstract: Let k be an uncountable algebraically closed field of characteristic 0, and let X be a smooth projective connected variety of dimension 2p, embedded into Pm over k. Let Y be a hyperplane section of X, and let Ap(Y) and Ap+1(X) be the groups of algebraically trivial algebraic cycles of codimension p and p+1 modulo rational equivalence on Y and X, respectively. Assume that, whenever Y is smooth, the group Ap(Y) is regularly parametrized by an abelian variety A and coincides with the subgroup of degree 0 classes in the Chow group CHp(Y). We prove that the kernel of the push-forward homomorphism from Ap(Y) to Ap+1(X) is the union of a countable collection of shifts of a certain abelian subvariety A0 inside A. For a very general hyperplane section Y either A0=0 or A0 coincides with an abelian subvariety A1 in A whose tangent space is the group of vanishing cycles H2p1(Y)van. Then we apply these general results to sections of a smooth cubic fourfold in P5.
Bibliography: 33 titles.
Keywords: algebraic cycles, Chow schemes, l-adic étale monodromy, Picard-Lefschetz formulae, cubic fourfold hypersurfaces.
Funding agency Grant number
Engineering and Physical Sciences Research Council EP/I034017/1
Department of Mathematical Sciences, University of Liverpool
The research of V. Guletskiĭ was carried out with the partial support of the Engineering and Physical Sciences Research Council — EPSRC (grant no. EP/I034017/1). The research of K. Banerjee was carried out with the partial support of the Department of Mathematical Sciences, University of Liverpool, in the framework of Graduate Teaching Assistantship.
Received: 19.02.2019 and 18.11.2019
Bibliographic databases:
Document Type: Article
UDC: 512.734+512.737+512.742
Language: English
Original paper language: Russian
Citation: K. Banerjee, V. Guletskiǐ, “Étale monodromy and rational equivalence for 1-cycles on cubic hypersurfaces in P5”, Sb. Math., 211:2 (2020), 161–200
Citation in format AMSBIB
\Bibitem{BanGul20}
\by K.~Banerjee, V.~Guletski{\v\i}
\paper \'Etale monodromy and rational equivalence for $1$-cycles on cubic hypersurfaces in~$\mathbb P^5$
\jour Sb. Math.
\yr 2020
\vol 211
\issue 2
\pages 161--200
\mathnet{http://mi.mathnet.ru/eng/sm9240}
\crossref{https://doi.org/10.1070/SM9240}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045696}
\zmath{https://zbmath.org/?q=an:1448.14011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020SbMat.211..161B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529464800001}
\elib{https://elibrary.ru/item.asp?id=45358592}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089365549}
Linking options:
  • https://www.mathnet.ru/eng/sm9240
  • https://doi.org/10.1070/SM9240
  • https://www.mathnet.ru/eng/sm/v211/i2/p3
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:453
    Russian version PDF:68
    English version PDF:55
    References:59
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025