Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2018, Volume 209, Issue 8, Pages 1155–1163
DOI: https://doi.org/10.1070/SM9032
(Mi sm9032)
 

This article is cited in 2 scientific papers (total in 2 papers)

On divisors of small canonical degree on Godeaux surfaces

Vik. S. Kulikov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Pre-spectral data (X,C,D)(X,C,D) coding the rank-1 commutative subalgebras of a certain completion ˆDˆD of the algebra of differential operators D=k[[x1,x2]][1,2]D=k[[x1,x2]][1,2], where kk is an algebraically closed field of characteristic 0, are shown to exist. Here XX is a Godeaux surface, CC is an effective ample divisor represented by a smooth curve, h0(X,OX(C))=1 and D is a divisor on X satisfying the conditions (D,C)X=g(C)1, hi(X,OX(D))=0 for i=0,1,2 and h0(X,OX(D+C))=1.
Bibliography: 26 titles.
Keywords: pre-spectral data for commutative subalgebras of rank 1, algebras of differential operators, Godeaux surfaces.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work was supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 31.10.2017 and 02.12.2017
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: Primary 13N15, 14J25; Secondary 37K10
Language: English
Original paper language: Russian
Citation: Vik. S. Kulikov, “On divisors of small canonical degree on Godeaux surfaces”, Sb. Math., 209:8 (2018), 1155–1163
Citation in format AMSBIB
\Bibitem{Kul18}
\by Vik.~S.~Kulikov
\paper On divisors of small canonical degree on Godeaux surfaces
\jour Sb. Math.
\yr 2018
\vol 209
\issue 8
\pages 1155--1163
\mathnet{http://mi.mathnet.ru/eng/sm9032}
\crossref{https://doi.org/10.1070/SM9032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833535}
\zmath{https://zbmath.org/?q=an:1428.14068}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018SbMat.209.1155K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448025000003}
\elib{https://elibrary.ru/item.asp?id=35276520}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85055785015}
Linking options:
  • https://www.mathnet.ru/eng/sm9032
  • https://doi.org/10.1070/SM9032
  • https://www.mathnet.ru/eng/sm/v209/i8/p56
  • This publication is cited in the following 2 articles:
    1. Alexander B. Zheglov, “The Schur–Sato Theory for Quasi-elliptic Rings”, Proc. Steklov Inst. Math., 320 (2023), 115–160  mathnet  crossref  crossref  mathscinet
    2. A. B. Zheglov, “Surprising examples of nonrational smooth spectral surfaces”, Sb. Math., 209:8 (2018), 1131–1154  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:426
    Russian version PDF:44
    English version PDF:16
    References:48
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025