Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 3, Pages 399–412
DOI: https://doi.org/10.1070/SM8727
(Mi sm8727)
 

This article is cited in 8 scientific papers (total in 8 papers)

Makarov's principle for the Bloch unit ball

O. V. Ivriia, I. R. Kayumovb

a California Institute of Technology, Pasadena, CA, USA
b Kazan (Volga Region) Federal University
References:
Abstract: Makarov's principle relates three characteristics of Bloch functions that resemble the variance of a Gaussian: asymptotic variance, the constant in Makarov's law of iterated logarithm and the second derivative of the integral means spectrum at the origin. While these quantities need not be equal in general, we show that the universal bounds agree if we take the supremum over the Bloch unit ball. For the supremum (of either of these quantities), we give the estimate Σ2B<min(0.9,Σ2), where Σ2 is the analogous quantity associated to the unit ball in the L norm on the Bloch space. This improves on the upper bound in Pommerenke's estimate 0.6852<Σ2B.
Bibliography: 23 titles.
Keywords: Bloch space, law of the iterated logarithm, integral means spectrum, Bergman projection.
Funding agency Grant number
Academy of Finland 271983
273458
Russian Foundation for Basic Research 14-01-00351-а
15-41-02433-р_поволжье_а
O. V. Ivrii's research was supported by the Academy of Finland (grants nos. 271983 and 273458). I. R. Kayumov's research was supported by the Russian Foundation for Basic Research (grant no. 14-01-00351_a) and by joint grant no. 15-41-02433-р_поволжье_a of the Russian Foundation for Basic Research and the government of the Republic of Tatarstan.
Received: 01.05.2016 and 01.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.546.12+517.547.5
MSC: 30H30
Language: English
Original paper language: Russian
Citation: O. V. Ivrii, I. R. Kayumov, “Makarov's principle for the Bloch unit ball”, Sb. Math., 208:3 (2017), 399–412
Citation in format AMSBIB
\Bibitem{IvrKay17}
\by O.~V.~Ivrii, I.~R.~Kayumov
\paper Makarov's principle for the Bloch unit ball
\jour Sb. Math.
\yr 2017
\vol 208
\issue 3
\pages 399--412
\mathnet{http://mi.mathnet.ru/eng/sm8727}
\crossref{https://doi.org/10.1070/SM8727}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3629078}
\zmath{https://zbmath.org/?q=an:1384.30012}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208..399I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000401851300006}
\elib{https://elibrary.ru/item.asp?id=28405178}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020080810}
Linking options:
  • https://www.mathnet.ru/eng/sm8727
  • https://doi.org/10.1070/SM8727
  • https://www.mathnet.ru/eng/sm/v208/i3/p96
  • This publication is cited in the following 8 articles:
    1. F. G. Avkhadiev, I. R. Kayumov, S. R. Nasyrov, “Extremal problems in geometric function theory”, Russian Math. Surveys, 78:2 (2023), 211–271  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Iason Efraimidis, Alejandro Mas, Dragan Vukotić, “Estimates for truncated area functionals on the Bloch space”, Proc. Amer. Math. Soc., 2023  crossref  mathscinet
    3. M. Huang, S. Ponnusamy, J. Qiao, “Extreme points and support points of harmonic alpha-bloch mappings”, Rocky Mt. J. Math., 50:4 (2020), 1323–1354  crossref  mathscinet  zmath  isi
    4. O. Ivrii, “On Makarov's principle in conformal mapping”, Int. Math. Res. Not. IMRN, 2019, no. 5, 1543–1567  crossref  mathscinet  zmath  isi  scopus
    5. I. R. Kayumov, K.-J. Wirths, “On the sum of squares of the coefficients of Bloch functions”, Monatsh. Math., 190:1 (2019), 123–135  crossref  mathscinet  zmath  isi  scopus
    6. I. R. Kayumov, K.-J. Wirths, “Coefficient inequalities for Bloch functions”, Lobachevskii J. Math., 40:9 (2019), 1319–1323  crossref  mathscinet  zmath  isi  scopus
    7. I. R. Kayumov, K.-J. Wirths, “Coefficients problems for Bloch functions”, Anal. Math. Phys., 9:3 (2019), 1069–1085  crossref  mathscinet  zmath  isi  scopus
    8. I. R. Kayumov, “A note on an area-type functional of Bloch functions”, Lobachevskii J Math, 38:3 (2017), 466  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:611
    Russian version PDF:101
    English version PDF:27
    References:67
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025