Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2004, Volume 195, Issue 12, Pages 1757–1779
DOI: https://doi.org/10.1070/SM2004v195n12ABEH000865
(Mi sm865)
 

On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds

A. M. Kytmanova, S. G. Myslivetsa, N. N. Tarkhanovb

a Krasnoyarsk State University
b University of Potsdam
References:
Abstract: The classical Lefschetz formula expresses the number of fixed points of a continuous map $f\colon M\to M$ in terms of the transformation induced by $f$ on the cohomology of $M$. In 1966, Atiyah and Bott extended this formula to elliptic complexes over a compact closed manifold. In particular, they obtained a holomorphic Lefschetz formula on compact complex manifolds without boundary. Brenner and Shubin (1981, 1991) extended the Atiyah–Bott theory to compact manifolds with boundary. On compact complex manifolds with boundary the Dolbeault complex is not elliptic, therefore the Atiyah–Bott theory is not applicable. Bypassing difficulties related to the boundary behaviour of Dolbeault cohomology, Donnelly and Fefferman (1986) obtained a formula for the number of fixed points in terms of the Bergman metric. The aim of this paper is to obtain a Lefschetz formula on relatively compact strictly pseudoconvex subdomains of complex manifolds $X$ with smooth boundary, that is, to find the total Lefschetz number for a holomorphic endomorphism $f^*$ of the Dolbeault complex and to express it in terms of local invariants of the fixed points of $f$.
Received: 28.10.2003 and 28.06.2004
Bibliographic databases:
UDC: 517.55
MSC: 58J20, 32Qxx
Language: English
Original paper language: Russian
Citation: A. M. Kytmanov, S. G. Myslivets, N. N. Tarkhanov, “On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds”, Sb. Math., 195:12 (2004), 1757–1779
Citation in format AMSBIB
\Bibitem{KytMysTar04}
\by A.~M.~Kytmanov, S.~G.~Myslivets, N.~N.~Tarkhanov
\paper On a holomorphic Lefschetz formula in strictly pseudoconvex subdomains of complex manifolds
\jour Sb. Math.
\yr 2004
\vol 195
\issue 12
\pages 1757--1779
\mathnet{http://mi.mathnet.ru/eng/sm865}
\crossref{https://doi.org/10.1070/SM2004v195n12ABEH000865}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138481}
\zmath{https://zbmath.org/?q=an:1078.58008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228585900010}
\elib{https://elibrary.ru/item.asp?id=14594479}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-17744371652}
Linking options:
  • https://www.mathnet.ru/eng/sm865
  • https://doi.org/10.1070/SM2004v195n12ABEH000865
  • https://www.mathnet.ru/eng/sm/v195/i12/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:486
    Russian version PDF:238
    English version PDF:22
    References:75
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025