Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2016, Volume 207, Issue 5, Pages 702–723
DOI: https://doi.org/10.1070/SM8565
(Mi sm8565)
 

This article is cited in 18 scientific papers (total in 18 papers)

Continuous Morse-Smale flows with three equilibrium positions

E. V. Zhuzhomaa, V. S. Medvedevb

a State University – Higher School of Economics in Nizhni Novgorod
b Lobachevski State University of Nizhni Novgorod
References:
Abstract: Continuous Morse-Smale flows on closed manifolds whose nonwandering set consists of three equilibrium positions are considered. Necessary and sufficient conditions for topological equivalence of such flows are obtained and the topological structure of the underlying manifolds is described.
Bibliography: 36 titles.
Keywords: Morse-Smale flows, topological equivalence.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03687-а
Russian Science Foundation 14-41-00044
This research was supported by the Russian Foundation for Basic Research (grant no. 15-01-03687-a) and the Russian Science Foundation (project no. 14-41-00044) within the framework of the Programme of Federal Research of the National Research University “Higher School of Economics” in 2016 (T3-98).
Received: 02.07.2015
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: Primary 37D15; Secondary 37C15, 37C70
Language: English
Original paper language: Russian
Citation: E. V. Zhuzhoma, V. S. Medvedev, “Continuous Morse-Smale flows with three equilibrium positions”, Sb. Math., 207:5 (2016), 702–723
Citation in format AMSBIB
\Bibitem{ZhuMed16}
\by E.~V.~Zhuzhoma, V.~S.~Medvedev
\paper Continuous Morse-Smale flows with three equilibrium positions
\jour Sb. Math.
\yr 2016
\vol 207
\issue 5
\pages 702--723
\mathnet{http://mi.mathnet.ru/eng/sm8565}
\crossref{https://doi.org/10.1070/SM8565}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507499}
\zmath{https://zbmath.org/?q=an:1373.37086}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016SbMat.207..702Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000380765400004}
\elib{https://elibrary.ru/item.asp?id=26414396}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84979651447}
Linking options:
  • https://www.mathnet.ru/eng/sm8565
  • https://doi.org/10.1070/SM8565
  • https://www.mathnet.ru/eng/sm/v207/i5/p69
  • This publication is cited in the following 18 articles:
    1. E. Ya. Gurevich, I. A. Saraev, “Kirby diagram of polar flows on four-dimensional manifolds”, Math. Notes, 116:1 (2024), 40–57  mathnet  crossref  crossref
    2. V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, “On Diffeomorphisms with Orientable Codimension 1 Basic Sets and an Isolated Saddle”, Proc. Steklov Inst. Math., 327 (2024), 55–69  mathnet  crossref  crossref
    3. Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “Smale Regular and Chaotic A-Homeomorphisms and A-Diffeomorphisms”, Regul. Chaotic Dyn., 28:2 (2023), 131–147  mathnet  crossref  mathscinet
    4. E. V. Zhuzhoma, V. S. Medvedev, “Many-Dimensional Morse–Smale Diffeomeophisms with a Dominant Saddle”, Math. Notes, 111:6 (2022), 870–878  mathnet  crossref  crossref  mathscinet
    5. V. Z. Grines, E. Ya. Gurevich, “Topological classification of flows without heteroclinic intersections on a connected sum of manifolds Sn1×S1”, Russian Math. Surveys, 77:4 (2022), 759–761  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    6. V. Z. Grines, E. Ya. Gurevich, “On classification of Morse–Smale flows on projective-like manifolds”, Izv. Math., 86:5 (2022), 876–902  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Vyacheslav Z. Grines, Vladislav S. Medvedev, Evgeny V. Zhuzhoma, “On the Topological Structure of Manifolds Supporting Axiom A Systems”, Regul. Chaotic Dyn., 27:6 (2022), 613–628  mathnet  crossref  mathscinet
    8. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On Embedding of the Morse–Smale Diffeomorphisms in a Topological Flow”, J Math Sci, 265:6 (2022), 868  crossref
    9. V. Medvedev, E. Zhuzhoma, “High-dimensional Morse-Smale systems with king-saddles”, Topology and its Applications, 312 (2022), 108080  crossref
    10. E. V. Zhuzhoma, V. S. Medvedev, “Necessary and sufficient conditions for the conjugacy of Smale regular homeomorphisms”, Sb. Math., 212:1 (2021), 57–69  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “On Realization of Topological Conjugacy Classes of Morse–Smale Cascades on the Sphere Sn”, Proc. Steklov Inst. Math., 310 (2020), 108–123  mathnet  crossref  crossref  mathscinet  isi  elib
    12. V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “O vklyuchenii diffeomorfizmov Morsa—Smeila v topologicheskii potok”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 160–181  mathnet  crossref
    13. V. Medvedev, E. Zhuzhoma, “Supporting manifolds for high-dimensional morse-smale diffeomorphisms with few saddles”, Topology Appl., 282 (2020), 107315  crossref  mathscinet  zmath  isi
    14. V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. V. Grines, E. Gurevich, O. Pochinka, “On embedding of multidimensional Morse–Smale diffeomorphisms into topological flows”, Mosc. Math. J., 19:4 (2019), 739–760  mathnet  crossref
    16. E. V. Zhuzhoma, V. S. Medvedev, “Conjugacy of Morse–Smale Diffeomorphisms with Three Nonwandering Points”, Math. Notes, 104:5 (2018), 753–757  mathnet  crossref  crossref  mathscinet  isi  elib
    17. V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, O. V. Pochinka, “An Analog of Smale's Theorem for Homeomorphisms with Regular Dynamics”, Math. Notes, 102:4 (2017), 569–574  mathnet  crossref  crossref  mathscinet  isi  elib
    18. V. Z. Grines, E. V. Zhuzhoma, O. V. Pochinka, “Sistemy Morsa–Smeila i topologicheskaya struktura nesuschikh mnogoobrazii”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 61, RUDN, M., 2016, 5–40  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:579
    Russian version PDF:176
    English version PDF:34
    References:77
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025