Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2014, Volume 205, Issue 6, Pages 763–776
DOI: https://doi.org/10.1070/SM2014v205n06ABEH004397
(Mi sm8265)
 

This article is cited in 24 scientific papers (total in 24 papers)

On steady motion of viscoelastic fluid of Oldroyd type

E. S. Baranovskii

Voronezh State University of Engineering Technologies
References:
Abstract: We consider a mathematical model describing the steady motion of a viscoelastic medium of Oldroyd type under the Navier slip condition at the boundary. In the rheological relation, we use the objective regularized Jaumann derivative. We prove the solubility of the corresponding boundary-value problem in the weak setting. We obtain an estimate for the norm of a solution in terms of the data of the problem. We show that the solution set is sequentially weakly closed. Furthermore, we give an analytic solution of the boundary-value problem describing the flow of a viscoelastic fluid in a flat channel under a slip condition at the walls.
Bibliography: 13 titles.
Keywords: non-Newtonian fluids, viscoelastic media, Oldroyd model, Navier slip condition, flow in a channel.
Received: 20.06.2013 and 30.03.2014
Bibliographic databases:
Document Type: Article
UDC: 517.958
MSC: Primary 35Q35; Secondary 35D30, 76A10
Language: English
Original paper language: Russian
Citation: E. S. Baranovskii, “On steady motion of viscoelastic fluid of Oldroyd type”, Sb. Math., 205:6 (2014), 763–776
Citation in format AMSBIB
\Bibitem{Bar14}
\by E.~S.~Baranovskii
\paper On steady motion of viscoelastic fluid of Oldroyd type
\jour Sb. Math.
\yr 2014
\vol 205
\issue 6
\pages 763--776
\mathnet{http://mi.mathnet.ru/eng/sm8265}
\crossref{https://doi.org/10.1070/SM2014v205n06ABEH004397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3241826}
\zmath{https://zbmath.org/?q=an:06349850}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014SbMat.205..763B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344080300001}
\elib{https://elibrary.ru/item.asp?id=21826626}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907364886}
Linking options:
  • https://www.mathnet.ru/eng/sm8265
  • https://doi.org/10.1070/SM2014v205n06ABEH004397
  • https://www.mathnet.ru/eng/sm/v205/i6/p3
  • This publication is cited in the following 24 articles:
    1. Evgenii S. Baranovskii, Mikhail A. Artemov, Sergey V. Ershkov, Alexander V. Yudin, “The Kelvin–Voigt–Brinkman–Forchheimer Equations with Non-Homogeneous Boundary Conditions”, Mathematics, 13:6 (2025), 967  crossref
    2. Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Multiplicative Control Problem for the Stationary Mass Transfer Model with Variable Coefficients”, Appl Math Optim, 90:2 (2024)  crossref
    3. Evgenii S. Baranovskii, Anastasia A. Domnich, Mikhail A. Artemov, “Mathematical Analysis of the Poiseuille Flow of a Fluid with Temperature-Dependent Properties”, Mathematics, 12:21 (2024), 3337  crossref
    4. Evgenii S. Baranovskii, Mikhail A. Artemov, “Topological Degree for Operators of Class (S)+ with Set-Valued Perturbations and Its New Applications”, Fractal Fract, 8:12 (2024), 738  crossref
    5. Cesar A. Valencia, David A. Torres, Clara G. Hernández, Juan P. Escandón, Juan R. Gómez, René O. Vargas, “Start-Up Multilayer Electro-Osmotic Flow of Maxwell Fluids through an Annular Microchannel under Hydrodynamic Slip Conditions”, Mathematics, 11:20 (2023), 4231  crossref
    6. Na Li, Guangpu Zhao, Xue Gao, Ying Zhang, Yongjun Jian, “The Impacts of Viscoelastic Behavior on Electrokinetic Energy Conversion for Jeffreys Fluid in Microtubes”, Nanomaterials, 12:19 (2022), 3355  crossref
    7. Evgenii S. Baranovskii, Mikhail A. Artemov, “Model for Aqueous Polymer Solutions with Damping Term: Solvability and Vanishing Relaxation Limit”, Polymers, 14:18 (2022), 3789  crossref
    8. E. S. Baranovskii, “Steady flows of an oldroyd fluid with threshold slip”, Commun. Pure Appl. Anal, 18:2 (2019), 735–750  crossref  mathscinet  zmath  isi  scopus
    9. E. S. Baranovskii, “On flows of viscoelastic fluids under threshold-slip boundary conditions”, International Conference Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 973, IOP Publishing Ltd, 2018, UNSP 012051  crossref  isi  scopus
    10. E. S. Baranovskii, M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip”, Acta Appl. Math., 147:1 (2017), 197–210  crossref  mathscinet  zmath  isi  elib  scopus
    11. E. S. Baranovskii, “On weak solutions to evolution equations of viscoelastic fluid flows”, J. Appl. Industr. Math., 11:2 (2017), 174–184  mathnet  crossref  crossref  elib
    12. E. S. Baranovskii, “Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids”, Comput. Math. Math. Phys., 56:7 (2016), 1363–1371  mathnet  crossref  crossref  isi  elib
    13. E. S. Baranovskii, A. A. Artemov, “Existence of optimal control for a nonlinear-viscous fluid model”, Int. J. Differ. Equ., 2016, 9428128, 6 pp.  crossref  mathscinet  zmath  isi  scopus
    14. E. S. Baranovskii, M. A. Artemov, “Ob odnoi modeli dvizheniya vyazkouprugoi zhidkosti s pristennym skolzheniem”, Sovremennye naukoemkie tekhnologii, 2016, no. 8-1, 27–31  elib
    15. M. A. Artemov, G. G. Berdzenishvili, “Global well-posedness for 2-D viscoelastic fluid model”, Appl. Math. Sci., 10:54 (2016), 2661–2670  crossref  elib  scopus
    16. V. A. Kozlov, S. A. Nazarov, “One-dimensional model of viscoelastic blood flow through a thin elastic vessel”, J. Math. Sci., 207:2 (2015), 249–269  crossref  mathscinet  zmath  scopus
    17. M. A. Artemov, E. S. Baranovskii, “Mixed boundary-value problems for motion equations of a viscoelastic medium”, Electron. J. Differential Equations, 2015:252 (2015), 1–9  mathscinet  elib  scopus
    18. M. A. Artemov, G. G. Berdzenishvili, A. P. Yakubenko, “Optimalnoe upravlenie sistemoi, opisyvayuschei techenie vyazkouprugoi sredy”, Mezhdunarodnyi zhurnal eksperimentalnogo obrazovaniya, 2015, 460–460  elib
    19. E. S. Baranovskii, “Existence results for regularized equations of second-grade fluids with wall slip”, Electron. J. Qual. Theory Differ. Equ., 2015, 91, 12 pp.  crossref  mathscinet  zmath  isi  scopus
    20. “Mixed Boundary-Value Problems For Motion Equations of a Viscoelastic Medium”, Electron. J. Differ. Equ., 2015, 252  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1307
    Russian version PDF:291
    English version PDF:34
    References:151
    First page:209
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025