Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2013, Volume 204, Issue 7, Pages 979–1002
DOI: https://doi.org/10.1070/SM2013v204n07ABEH004327
(Mi sm8139)
 

This article is cited in 13 scientific papers (total in 13 papers)

The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels

A. A. Bobodzhanov, V. F. Safonov

National Research University "Moscow Power Engineering Institute"
References:
Abstract: The paper deals with extending the Lomov regularization method to classes of singularly perturbed Fredholm-type integro-differential systems, which have not so far been studied. In these the limiting operator is discretely noninvertible. Such systems are commonly known as problems with unstable spectrum. Separating out the essential singularities in the solutions to these problems presents great difficulties. The principal one is to give an adequate description of the singularities induced by ‘instability points’ of the spectrum. A methodology for separating singularities by using normal forms is developed. It is applied to the above type of systems and is substantiated in these systems.
Bibliography: 10 titles.
Keywords: singular perturbation, integro-differential equation, regularizing normal form, asymptotic series.
Received: 02.05.2012 and 01.12.2012
Bibliographic databases:
Document Type: Article
UDC: 517.968
MSC: 45M05
Language: English
Original paper language: Russian
Citation: A. A. Bobodzhanov, V. F. Safonov, “The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels”, Sb. Math., 204:7 (2013), 979–1002
Citation in format AMSBIB
\Bibitem{BobSaf13}
\by A.~A.~Bobodzhanov, V.~F.~Safonov
\paper The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels
\jour Sb. Math.
\yr 2013
\vol 204
\issue 7
\pages 979--1002
\mathnet{http://mi.mathnet.ru/eng/sm8139}
\crossref{https://doi.org/10.1070/SM2013v204n07ABEH004327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3114874}
\zmath{https://zbmath.org/?q=an:06231583}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013SbMat.204..979B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000324295300003}
\elib{https://elibrary.ru/item.asp?id=20359261}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888377177}
Linking options:
  • https://www.mathnet.ru/eng/sm8139
  • https://doi.org/10.1070/SM2013v204n07ABEH004327
  • https://www.mathnet.ru/eng/sm/v204/i7/p47
  • This publication is cited in the following 13 articles:
    1. S. K. Zarifzoda, T. K. Yuldashev, “Some Classes of First-Order Integro-Differential Equations and Their Conjugate Equations”, Lobachevskii J Math, 44:7 (2023), 2994  crossref
    2. Kalimbetov B.T., Tuychiev O.D., “Asymptotic Solution of the Cauchy Problem For the Singularly Perturbed Partial Integro-Differential Equation With Rapidly Oscillating Coefficients and With Rapidly Oscillating Heterogeneity”, Open Math., 19 (2021), 244–258  crossref  mathscinet  isi
    3. Yuldashev T.K., Zarifzoda S.K., “On a New Class of Singular Integro-Differential Equations”, Bull. Karaganda Univ-Math., 101:1 (2021), 138–148  crossref  mathscinet  isi
    4. Yuldashev T.K., Odinaev R.N., Zarifzoda S.K., “On Exact Solutions of a Class of Singular Partial Integro-Differential Equations”, Lobachevskii J. Math., 42:3, SI (2021), 676–684  crossref  mathscinet  isi
    5. Bobodzhanov A., Kalimbetov B., Safonov V., “Asymptotic Solutions of Singularly Perturbed Integro-Differential Systems With Rapidly Oscillating Coefficients in the Case of a Simple Spectrum”, AIMS Math., 6:8 (2021), 8835–8853  crossref  mathscinet  isi
    6. Yuldashev T.K., Zarifzoda S.K., “New Type Super Singular Integro-Differential Equation and Its Conjugate Equation”, Lobachevskii J. Math., 41:6, SI (2020), 1123–1130  crossref  mathscinet  zmath  isi  scopus
    7. Kalimbetov B.T., Etmishev Kh.F., “Asymptotic Solutions of Scalar Integro-Differential Equations With Partial Derivatives and With Rapidly Oscillating Coefficients”, Bull. Karaganda Univ-Math., 97:1 (2020), 52–67  crossref  isi
    8. Kalimbetov B., Safonov V., “Regularization Method For Singularly Perturbed Integro-Differential Equations With Rapidly Oscillating Coefficients and Rapidly Changing Kernels”, Axioms, 9:4 (2020), 131  crossref  mathscinet  isi
    9. Kalimbetov B.T., Safonov V.F., “Integro-Differentiated Singularly Perturbed Equations With Fast Oscillating Coefficients”, Bull. Karaganda Univ-Math., 94:2 (2019), 33–47  crossref  isi
    10. Bobodzhanov A.A., Kalimbetov B.T., Safonov V.F., “Singularly Perturbed Control Problems in the Case of the Stability of the Spectrum of the Matrix of An Optimal System”, Bull. Karaganda Univ-Math., 96:4 (2019), 22–38  crossref  isi
    11. S. K. Zaripov, “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integrodifferentsialnykh uravnenii pervogo poryadka s singulyarnoi tochkoi v yadre”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2017, no. 46, 24–35  mathnet  crossref  elib
    12. S. K. Zaripov, “Postroenie analoga teoremy Fredgolma dlya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s logarifmicheskoi osobennostyu v yadre”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 21:2 (2017), 236–248  mathnet  crossref  zmath  elib
    13. S. K. Zaripov, “Ob odnoi novoi metodike resheniya odnogo klassa modelnykh integro-differentsialnykh uravnenii pervogo poryadka s singulyarnym yadrom”, Matematicheskaya fizika i kompyuternoe modelirovanie, 20:4 (2017), 68–75  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:558
    Russian version PDF:203
    English version PDF:18
    References:83
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025