Abstract:
The question of the approximate controllability for the 2- and
the 3-dimensional Navier–Stokes system defined in the exterior of
a bounded domain ω or in the entire space is studied. It is shown that one can find
boundary controls or locally distributed controls (having support in a prescribed bounded domain) defined on the right-hand side of the system such that in prescribed time the solution of the Navier–Stokes system becomes arbitrarily close to an arbitrary prescribed divergence-free vector field.
\Bibitem{Sho03}
\by P.~O.~Shorygin
\paper Approximate controllability of the~Navier--Stokes system in unbounded domains
\jour Sb. Math.
\yr 2003
\vol 194
\issue 11
\pages 1725--1745
\mathnet{http://mi.mathnet.ru/eng/sm784}
\crossref{https://doi.org/10.1070/SM2003v194n11ABEH000784}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2041470}
\zmath{https://zbmath.org/?q=an:1113.93015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000220189500007}
\elib{https://elibrary.ru/item.asp?id=13945185}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-1642292998}
Linking options:
https://www.mathnet.ru/eng/sm784
https://doi.org/10.1070/SM2003v194n11ABEH000784
https://www.mathnet.ru/eng/sm/v194/i11/p141
This publication is cited in the following 3 articles:
Tujin Kim, Daomin Cao, “Local Exact Controllability of the Navier–Stokes Equations with the Condition on the Pressure on Parts of the Boundary”, SIAM J Control Optim, 48:6 (2010), 3805
A. V. Fursikov, “Flow of a viscous incompressible fluid around a body: boundary-value problems and minimization of the work of a fluid”, Journal of Mathematical Sciences, 180:6 (2012), 763–816
Fursikov A.V., Gunzburger M.D., Hou L.S., “Optimal boundary control for the evolutionary Navier–Stokes system: The three-dimensional case”, SIAM J. Control Optim., 43:6 (2005), 2191–2232