Abstract:
For homeomorphisms φ:Ω→Ω′ on Euclidean domains in Rn, n⩾2, necessary and sufficient conditions ensuring that the inverse mapping belongs to a Sobolev class are investigated. The result obtained is used to describe a new two-index scale of homeomorphisms in some Sobolev class such that their inverses also form a two-index scale of mappings, in another Sobolev class.
This scale involves quasiconformal mappings and also homeomorphisms in the Sobolev class W1n−1 such that rankDφ(x)⩽n−2 almost everywhere on the zero set of the Jacobian
det.
Bibliography: 65 titles.
Keywords:
Sobolev class of mappings, approximate differentiability, distortion and codistortion of mappings, generalized quasiconformal mapping, composition operator.
\Bibitem{Vod12}
\by S.~K.~Vodopyanov
\paper Regularity of mappings inverse to Sobolev mappings
\jour Sb. Math.
\yr 2012
\vol 203
\issue 10
\pages 1383--1410
\mathnet{http://mi.mathnet.ru/eng/sm7792}
\crossref{https://doi.org/10.1070/SM2012v203n10ABEH004269}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3027136}
\zmath{https://zbmath.org/?q=an:1266.26019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312249700001}
\elib{https://elibrary.ru/item.asp?id=19066320}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84872372861}
Linking options:
https://www.mathnet.ru/eng/sm7792
https://doi.org/10.1070/SM2012v203n10ABEH004269
https://www.mathnet.ru/eng/sm/v203/i10/p3
This publication is cited in the following 50 articles:
S. K. Vodopyanov, S. V. Pavlov, “Funktsionalnye svoistva predelov sobolevskikh gomeomorfizmov s integriruemym iskazheniem”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 2, Rossiiskii universitet druzhby narodov, M., 2024, 215–236
S. K. Vodopyanov, S. V. Pavlov, “O granichnykh znacheniyakh v geometricheskoi teorii funktsii v oblastyakh s podvizhnymi granitsami”, Sib. matem. zhurn., 65:3 (2024), 489–516
S. K. Vodopyanov, S. V. Pavlov, “Boundary Values in the Geometric Function Theory in Domains with Moving Boundaries”, Sib Math J, 65:3 (2024), 552
Pekka Koskela, Zheng Zhu, “Sobolev Extensions over Cantor-Cuspidal Graphs”, J Math Sci, 281:5 (2024), 706
S. K. Vodopyanov, “The Geometric Function Properties of the Limits of ACL-Mappings with Integrable Distortion”, Sib Math J, 65:5 (2024), 1026
S. K. Vodopyanov, “Funktsionalno-geometricheskie svoistva predelov ACL-otobrazhenii s integriruemym iskazheniem”, Sib. matem. zhurn., 65:5 (2024), 820–840
S. K. Vodopyanov, “Composition operators in Sobolev spaces on Riemannian manifolds”, Siberian Math. J., 65:6 (2024), 1305–1326
S. K. Vodopyanov, S. V. Pavlov, “Functional Properties of Limits of Sobolev Homeomorphisms with Integrable Distortion”, J Math Sci, 2024
Izv. Math., 87:4 (2023), 683–725
S. K. Vodopyanov, “On the Gehring type condition and properties of mappings”, Vladikavk. matem. zhurn., 25:3 (2023), 51–58
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
S. K. Vodopyanov, N. A. Evseev, “Functional and analytical properties of a class of mappings of quasiconformal analysis on Carnot groups”, Siberian Math. J., 63:2 (2022), 233–261
S. K. Vodopyanov, “On Poletsky-type modulus inequalities for some classes of mappings”, Vladikavk. matem. zhurn., 24:4 (2022), 58–69
P. Koskela, Z. Zhu, “Sobolev Extensions Via Reflections”, J Math Sci, 268:3 (2022), 376
Elisa Davoli, Anastasia Molchanova, Ulisse Stefanelli, “Equilibria of Charged Hyperelastic Solids”, SIAM J. Math. Anal., 54:2 (2022), 1470
S. K. Vodopyanov, “TWO-WEIGHTED COMPOSITION OPERATORS ON SOBOLEV SPACES AND QUASICONFORMAL ANALYSIS”, J Math Sci, 266:3 (2022), 491
Vodopyanov S.K., “Moduli Inequalities For W-N-1,Loc(1)-Mappings With Weighted Bounded (Q, P)-Distortion”, Complex Var. Elliptic Equ., 66:6-7 (2021), 1037–1072
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025
Molchanova A., Roskovec T., Soudsky F., “Regularity of the Inverse Mapping in Banach Function Spaces”, Math. Nachr., 294:12 (2021), 2382–2395