Abstract:
An initial-value problem for a linear ordinary differential equation of noninteger order with Riemann-Liouville derivatives is stated and solved. The initial conditions of the problem ensure that (by contrast with the Cauchy problem) it is uniquely solvable for an arbitrary set of parameters specifying the orders of the derivatives involved in the equation; these conditions are necessary for the equation under consideration. The problem is reduced to an integral equation; an explicit representation of the solution in terms of the Wright function
is constructed. As a consequence of these results, necessary and sufficient conditions for the solvability of the Cauchy problem are obtained.
Bibliography: 7 titles.
Keywords:
fractional order derivative, Cauchy problem, differential equation of fractional order, Wright function, Hille-Tamarkin formula.
\Bibitem{Psk11}
\by A.~V.~Pskhu
\paper Initial-value problem for a~linear ordinary differential equation of noninteger order
\jour Sb. Math.
\yr 2011
\vol 202
\issue 4
\pages 571--582
\mathnet{http://mi.mathnet.ru/eng/sm7645}
\crossref{https://doi.org/10.1070/SM2011v202n04ABEH004156}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2830238}
\zmath{https://zbmath.org/?q=an:1226.34005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202..571P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000292829300005}
\elib{https://elibrary.ru/item.asp?id=19066272}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79959815598}
Linking options:
https://www.mathnet.ru/eng/sm7645
https://doi.org/10.1070/SM2011v202n04ABEH004156
https://www.mathnet.ru/eng/sm/v202/i4/p111
This publication is cited in the following 77 articles:
Arsen V. Pskhu, “Inversion formulas for distributed order integration and differentiation operators”, J Math Sci, 2025
S. Kh. Gekkieva, M. A. Kerefov, “K voprosu suschestvovaniya resheniya pervoi kraevoi zadachi dlya uravneniya vlagoperenosa Allera – Lykova s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Doklady AMAN, 24:1 (2024), 11–22
M.G. MAZhGIKhOVA, “GENERALIZED STORM TYPE BOUNDARY-VALUE PROBLEM FOR A LINEAR ORDINARY DIFFERENTIAL EQUATION OF FRACTIONAL ORDER”, Vestnik Akademii nauk Chechenskoi Respubliki, 2024, no. 1(64), 5
Madina G. Mazhgikhova, “DIRICHLET–NEUMANN BOUNDARY VALUE PROBLEM FOR A FRACTIONAL ORDER DIFFERENTIAL EQUATION WITH DELAY”, J Math Sci, 2024
Zh. A. Balkizov, “Tricomi problem analogue for a second order mixed type equation”, Vladikavk. matem. zhurn., 26:4 (2024), 44–54
L. Kh. Gadzova, “Naimark Problem for a Fractional Ordinary Differential Equation”, Math. Notes, 114:2 (2023), 159–164
M. G. Mazhgikhova, “Zadacha Koshi dlya uravneniya s drobnoi proizvodnoi Dzhrbashyana – Nersesyana s zapazdyvayuschim argumentom”, Vestnik KRAUNTs. Fiz.-mat. nauki, 42:1 (2023), 98–107
B. Yu. Irgashev, “Reshenie zadachi Koshi dlya odnogo vyrozhdayushchegosya uravneniya s drobnoy proizvodnoy Dzhrbashyana–Nersesyana”, Differentsialnye uravneniya, 59:12 (2023), 1715
Ravshan Ashurov, Oqila Mukhiddinova, “Inverse problem of determining the order of the fractional derivative in the Rayleigh-Stokes equation”, Fract Calc Appl Anal, 26:4 (2023), 1691
Vladimir E. Fedorov, Mikhail M. Turov, “Multi-term equations with Riemann–Liouville derivatives and Hölder type function spaces”, Bol. Soc. Mat. Mex., 29:2 (2023)
Ravshan Ashurov, Oqila Mukhiddinova, Sabir Umarov, “A Non-Local Problem for the Fractional-Order Rayleigh–Stokes Equation”, Fractal Fract, 7:6 (2023), 490
B. Yu. Irgashev, “Solution of the Cauchy Problem for One Degenerate Equation with the Dzhrbashyan–Nersesyan Fractional Derivative”, Diff Equat, 59:12 (2023), 1784
Fedorov V.E., Du W.-Sh., Turov M.M., “On the Unique Solvability of Incomplete Cauchy Type Problems For a Class of Multi-Term Equations With the Riemann-Liouville Derivatives”, Symmetry-Basel, 14:1 (2022), 75
Karimov E., Ruzhansky M., Tokmagambetov N., “Cauchy Type Problems For Fractional Differential Equations”, Integral Transform. Spec. Funct., 33:1 (2022), 47–64
M. M. Turov, “Kvazilineinye uravneniya s neskolkimi proizvodnymi Rimana — Liuvillya proizvolnykh poryadkov”, Chelyab. fiz.-matem. zhurn., 7:4 (2022), 434–446
A. F. Tsakhoeva, D. D. Shigin, “Chislennaya realizatsiya matematicheskoi modeli (SEIRD) na osnove dannykh rasprostraneniya pyatoi volny COVID-19 v Rossii i regionakh”, Vestnik KRAUNTs. Fiz.-mat. nauki, 39:2 (2022), 103–118
B. I. Efendiev, “Problem with Sturm Type Conditions for a Second-Order Ordinary Differential Equation with a Distributed Differentiation Operator”, Diff Equat, 58:12 (2022), 1579
V. E. Fedorov, M. M. Turov, “Sectorial Tuples of Operators and Quasilinear Fractional Equations with Multi-Term Linear Part”, Lobachevskii J Math, 43:6 (2022), 1502