Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2011, Volume 202, Issue 1, Pages 61–99
DOI: https://doi.org/10.1070/SM2011v202n01ABEH004138
(Mi sm7599)
 

This article is cited in 5 scientific papers (total in 5 papers)

Triviality of vector bundles on twisted ind-Grassmannians

I. B. Penkova, A. S. Tikhomirovb

a School of Engineering and Science, Jacobs University Bremen, Germany
b Yaroslavl State Pedagogical University named after K. D. Ushinsky
References:
Abstract: Twisted ind-Grassmannians are ind-varieties $\mathbf G$ obtained as direct limits of Grassmannians $G(i_m,V^{n_m})$ for $m\in\mathbb Z_{>0}$ under embeddings of degree greater than $1$. It has been conjectured by Donin and Penkov (2003) that any vector bundle of finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture.
Bibliography: 16 titles.
Keywords: ind-variety, twisted ind-Grassmannian, vector bundle.
Received: 08.07.2009 and 19.07.2010
Bibliographic databases:
Document Type: Article
UDC: 512.723
MSC: 14M15, 14J60
Language: English
Original paper language: Russian
Citation: I. B. Penkov, A. S. Tikhomirov, “Triviality of vector bundles on twisted ind-Grassmannians”, Sb. Math., 202:1 (2011), 61–99
Citation in format AMSBIB
\Bibitem{PenTik11}
\by I.~B.~Penkov, A.~S.~Tikhomirov
\paper Triviality of vector bundles on twisted ind-Grassmannians
\jour Sb. Math.
\yr 2011
\vol 202
\issue 1
\pages 61--99
\mathnet{http://mi.mathnet.ru/eng/sm7599}
\crossref{https://doi.org/10.1070/SM2011v202n01ABEH004138}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2796827}
\zmath{https://zbmath.org/?q=an:1223.14048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2011SbMat.202...61P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000290670400004}
\elib{https://elibrary.ru/item.asp?id=19066236}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79955580881}
Linking options:
  • https://www.mathnet.ru/eng/sm7599
  • https://doi.org/10.1070/SM2011v202n01ABEH004138
  • https://www.mathnet.ru/eng/sm/v202/i1/p65
  • This publication is cited in the following 5 articles:
    1. M. V. Ignatyev, I. Penkov, “Ind-Varieties of Generalized Flags: A Survey of Results”, Journal of Mathematical Sciences, 248:3 (2020), 255–302  mathnet  crossref  mathscinet  zmath
    2. S. M. Ermakova, “Ravnomernost vektornykh rassloenii konechnogo ranga na polnykh peresecheniyakh konechnoi korazmernosti v lineinykh ind-grassmanianakh”, Model. i analiz inform. sistem, 22:2 (2015), 209–218  mathnet  mathscinet  elib
    3. I. B. Penkov, A. S. Tikhomirov, “On the Barth-Van de Ven-Tyurin-Sato theorem”, Sb. Math., 206:6 (2015), 814–848  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. S. M. Ermakova, “O prostranstve putei na polnykh peresecheniyakh v grassmanianakh”, Model. i analiz inform. sistem, 21:4 (2014), 35–46  mathnet
    5. I. Penkov, A. S. Tikhomirov, “Linear ind-Grassmannians”, Pure Appl. Math. Q., 10:2 (2014), 289–323  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:593
    Russian version PDF:215
    English version PDF:20
    References:64
    First page:14
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025