Abstract:
Twisted ind-Grassmannians are ind-varieties $\mathbf G$ obtained as direct limits of Grassmannians
$G(i_m,V^{n_m})$ for $m\in\mathbb Z_{>0}$ under embeddings of degree greater than $1$. It has been conjectured by Donin and Penkov (2003) that any vector bundle of finite rank on a twisted ind-Grassmannian is trivial. We prove this conjecture.
Bibliography: 16 titles.
This publication is cited in the following 5 articles:
M. V. Ignatyev, I. Penkov, “Ind-Varieties of Generalized Flags: A Survey of Results”, Journal of Mathematical Sciences, 248:3 (2020), 255–302
S. M. Ermakova, “Ravnomernost vektornykh rassloenii konechnogo ranga na polnykh peresecheniyakh konechnoi korazmernosti v lineinykh ind-grassmanianakh”, Model. i analiz inform. sistem, 22:2 (2015), 209–218
I. B. Penkov, A. S. Tikhomirov, “On the Barth-Van de Ven-Tyurin-Sato theorem”, Sb. Math., 206:6 (2015), 814–848
S. M. Ermakova, “O prostranstve putei na polnykh peresecheniyakh v grassmanianakh”, Model. i analiz inform. sistem, 21:4 (2014), 35–46
I. Penkov, A. S. Tikhomirov, “Linear ind-Grassmannians”, Pure Appl. Math. Q., 10:2 (2014), 289–323