Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 6, Pages 909–934
DOI: https://doi.org/10.1070/SM2010v201n06ABEH004096
(Mi sm7529)
 

This article is cited in 42 scientific papers (total in 42 papers)

The theory of shell-based Q-mappings in geometric function theory

R. R. Salimov, E. A. Sevost'yanov

Institute of Applied Mathematics and Mechanics, Ukraine National Academy of Sciences
References:
Abstract: Open, discrete Q-mappings in Rn, n2, QL1loc, are proved to be absolutely continuous on lines, to belong to the Sobolev class W1,1loc, to be differentiable almost everywhere and to have the N1-property (converse to the Luzin N-property). It is shown that a family of open, discrete shell-based Q-mappings leaving out a subset of positive capacity is normal, provided that either Q has finite mean oscillation at each point or Q has only logarithmic singularities of order at most n1. Under the same assumptions on Q it is proved that an isolated singularity x0D of an open discrete shell-based Q-map f:D{x0}¯Rn is removable; moreover, the extended map is open and discrete. On the basis of these results analogues of the well-known Liouville, Sokhotskii-Weierstrass and Picard theorems are obtained.
Bibliography: 34 titles.
Keywords: quasiconformal mappings and their generalizations, moduli of families of curves, capacity, removing singularities of maps, theorems of Liouville, Sokhotskii and Picard type.
Received: 23.01.2009 and 19.01.2010
Bibliographic databases:
Document Type: Article
UDC: 517.548.2+517.548.9+517.547.26
MSC: 30C65
Language: English
Original paper language: Russian
Citation: R. R. Salimov, E. A. Sevost'yanov, “The theory of shell-based Q-mappings in geometric function theory”, Sb. Math., 201:6 (2010), 909–934
Citation in format AMSBIB
\Bibitem{SalSev10}
\by R.~R.~Salimov, E.~A.~Sevost'yanov
\paper The theory of shell-based $Q$-mappings in geometric function theory
\jour Sb. Math.
\yr 2010
\vol 201
\issue 6
\pages 909--934
\mathnet{http://mi.mathnet.ru/eng/sm7529}
\crossref{https://doi.org/10.1070/SM2010v201n06ABEH004096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682368}
\zmath{https://zbmath.org/?q=an:1221.30059}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..909S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540800005}
\elib{https://elibrary.ru/item.asp?id=19066213}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958531255}
Linking options:
  • https://www.mathnet.ru/eng/sm7529
  • https://doi.org/10.1070/SM2010v201n06ABEH004096
  • https://www.mathnet.ru/eng/sm/v201/i6/p131
  • This publication is cited in the following 42 articles:
    1. Alexander Ukhlov, “On geometric characterizations of mappings generating composition operators on Sobolev spaces”, J Math Sci, 282:1 (2024), 93  crossref
    2. Alexander Ukhlov, “On geometric characterizations of mappings generating composition operators on Sobolev spaces”, UMB, 21:1 (2024), 120  crossref
    3. Izv. Math., 87:4 (2023), 683–725  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Vladimir Gutlyanskii, Vladimir Ryazanov, Ruslan Salimov, Evgeny Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, UMB, 20:3 (2023), 400  crossref
    5. Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 119  crossref
    6. V. Gutlyanskiǐ, V. Ryazanov, R. Salimov, E. Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, J Math Sci, 276:5 (2023), 652  crossref
    7. S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. E. Sevost'yanov, “On global behavior of mappings with integral constraints”, Anal.Math.Phys., 12:3 (2022)  crossref
    9. S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    10. S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025  mathnet  crossref  crossref  isi  elib
    11. Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p, q)-quasiconformal homeomorphisms”, J Math Sci, 246:1 (2020), 18  crossref
    12. Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p,q)-quasiconformal homeomorphisms”, UMB, 16:3 (2019), 329  crossref
    13. D. P. Il'yutko, E. A. Sevost'yanov, “Boundary behaviour of open discrete mappings on Riemannian manifolds”, Sb. Math., 209:5 (2018), 605–651  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    14. Golberg A., Salimov R., “Regularity of Mappings With Integrally Restricted Moduli”, Complex Analysis and Dynamical Systems: New Trends and Open Problems, Trends in Mathematics, eds. Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L., Birkhauser Verlag Ag, 2018, 129–140  crossref  mathscinet  zmath  isi  scopus
    15. Sevost'yanov E., “On local behavior of mappings with unbounded characteristic”, Lobachevskii J. Math., 38:2, SI (2017), 371–378  crossref  mathscinet  zmath  isi  scopus
    16. Golberg A. Salimov R. Sevost'yanov E., “Estimates For Jacobian and Dilatation Coefficients of Open Discrete Mappings With Controlled P-Module”, Complex Anal. Oper. Theory, 11:7, SI (2017), 1521–1542  crossref  mathscinet  zmath  isi  scopus
    17. Afanas'eva E., “Ring Q-Homeomorphisms on Finsler Manifolds”, Complex Anal. Oper. Theory, 11:7, SI (2017), 1557–1567  crossref  mathscinet  zmath  isi  scopus
    18. Salimov R.R., Sevost'yanov E.A., “On the Absolute Continuity of Mappings Distorting the Moduli of Cylinders”, Ukr. Math. J., 69:6 (2017), 1001–1006  crossref  mathscinet  zmath  isi  scopus  scopus
    19. Evgeny A. Sevost'yanov, Sergei A. Skvortsov, “On the local behavior of the Orlicz–Sobolev classes”, J Math Sci, 224:4 (2017), 563  crossref
    20. D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:961
    Russian version PDF:258
    English version PDF:19
    References:71
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025