Abstract:
Open, discrete Q-mappings in Rn, n⩾2, Q∈L1loc, are proved to be absolutely continuous on lines, to belong to the Sobolev class W1,1loc, to be differentiable almost everywhere and to have the N−1-property (converse to the Luzin N-property). It is shown
that a family of open, discrete shell-based Q-mappings leaving out a subset of positive capacity is normal, provided that either Q has finite mean oscillation at each point or Q has only logarithmic singularities of order at most n−1. Under the same assumptions on Q it is proved that an isolated singularity x0∈D of an open discrete shell-based Q-map f:D∖{x0}→¯Rn is removable; moreover, the extended map is open and discrete. On the basis of these results analogues of the well-known Liouville, Sokhotskii-Weierstrass and Picard theorems are obtained.
Bibliography: 34 titles.
Keywords:
quasiconformal mappings and their generalizations, moduli of families of curves, capacity, removing singularities of maps, theorems of Liouville, Sokhotskii and Picard type.
\Bibitem{SalSev10}
\by R.~R.~Salimov, E.~A.~Sevost'yanov
\paper The theory of shell-based $Q$-mappings in geometric function theory
\jour Sb. Math.
\yr 2010
\vol 201
\issue 6
\pages 909--934
\mathnet{http://mi.mathnet.ru/eng/sm7529}
\crossref{https://doi.org/10.1070/SM2010v201n06ABEH004096}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2682368}
\zmath{https://zbmath.org/?q=an:1221.30059}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..909S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281540800005}
\elib{https://elibrary.ru/item.asp?id=19066213}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77958531255}
Linking options:
https://www.mathnet.ru/eng/sm7529
https://doi.org/10.1070/SM2010v201n06ABEH004096
https://www.mathnet.ru/eng/sm/v201/i6/p131
This publication is cited in the following 42 articles:
Alexander Ukhlov, “On geometric characterizations of mappings generating composition operators on Sobolev spaces”, J Math Sci, 282:1 (2024), 93
Alexander Ukhlov, “On geometric characterizations of mappings generating composition operators on Sobolev spaces”, UMB, 21:1 (2024), 120
Izv. Math., 87:4 (2023), 683–725
Vladimir Gutlyanskii, Vladimir Ryazanov, Ruslan Salimov, Evgeny Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, UMB, 20:3 (2023), 400
Evgeny Sevost'yanov, Developments in Mathematics, 78, Mappings with Direct and Inverse Poletsky Inequalities, 2023, 119
V. Gutlyanskiǐ, V. Ryazanov, R. Salimov, E. Sevost'yanov, “On isolated singularities of mappings with finite length distortion”, J Math Sci, 276:5 (2023), 652
S. K. Vodopyanov, “Coincidence of set functions in quasiconformal analysis”, Sb. Math., 213:9 (2022), 1157–1186
E. Sevost'yanov, “On global behavior of mappings with integral constraints”, Anal.Math.Phys., 12:3 (2022)
S. K. Vodopyanov, A. O. Tomilov, “Functional and analytic properties of a class of mappings in quasi-conformal analysis”, Izv. Math., 85:5 (2021), 883–931
S. K. Vodopyanov, “On the equivalence of two approaches to problems of quasiconformal analysis”, Siberian Math. J., 62:6 (2021), 1010–1025
Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p, q)-quasiconformal homeomorphisms”, J Math Sci, 246:1 (2020), 18
Vladimir Gol'dshtein, Alexander Ukhlov, “On the functional properties of weak (p,q)-quasiconformal homeomorphisms”, UMB, 16:3 (2019), 329
D. P. Il'yutko, E. A. Sevost'yanov, “Boundary behaviour of open discrete mappings on Riemannian manifolds”, Sb. Math., 209:5 (2018), 605–651
Golberg A., Salimov R., “Regularity of Mappings With Integrally Restricted Moduli”, Complex Analysis and Dynamical Systems: New Trends and Open Problems, Trends in Mathematics, eds. Agranovsky M., Golberg A., Jacobzon F., Shoikhet D., Zalcman L., Birkhauser Verlag Ag, 2018, 129–140
Sevost'yanov E., “On local behavior of mappings with unbounded characteristic”, Lobachevskii J. Math., 38:2, SI (2017), 371–378
Golberg A. Salimov R. Sevost'yanov E., “Estimates For Jacobian and Dilatation Coefficients of Open Discrete Mappings With Controlled P-Module”, Complex Anal. Oper. Theory, 11:7, SI (2017), 1521–1542
Afanas'eva E., “Ring Q-Homeomorphisms on Finsler Manifolds”, Complex Anal. Oper. Theory, 11:7, SI (2017), 1557–1567
Salimov R.R., Sevost'yanov E.A., “On the Absolute Continuity of Mappings Distorting the Moduli of Cylinders”, Ukr. Math. J., 69:6 (2017), 1001–1006
Evgeny A. Sevost'yanov, Sergei A. Skvortsov, “On the local behavior of the Orlicz–Sobolev classes”, J Math Sci, 224:4 (2017), 563
D. P. Il'yutko, E. A. Sevost'yanov, “Open discrete mappings with unbounded coefficient of quasi-conformality on Riemannian manifolds”, Sb. Math., 207:4 (2016), 537–580