Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2009, Volume 200, Issue 11, Pages 1715–1729
DOI: https://doi.org/10.1070/SM2009v200n11ABEH004056
(Mi sm7513)
 

This article is cited in 17 scientific papers (total in 17 papers)

Hassett-Tschinkel correspondence and automorphisms of the quadric

E. V. Sharoiko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper we study locally transitive actions of the commutative unipotent group $\mathbb G_a^n$ on a nondegenerate quadric in the projective space $\mathbb P^{n+1}$. It is shown that for each $n$ such an action is unique up to isomorphism.
Bibliography: 9 titles.
Keywords: automorphisms of quadrics, locally transitive actions.
Received: 09.12.2008 and 29.04.2009
Bibliographic databases:
UDC: 512.743.7
MSC: 14L30
Language: English
Original paper language: Russian
Citation: E. V. Sharoiko, “Hassett-Tschinkel correspondence and automorphisms of the quadric”, Sb. Math., 200:11 (2009), 1715–1729
Citation in format AMSBIB
\Bibitem{Sha09}
\by E.~V.~Sharoiko
\paper Hassett-Tschinkel correspondence and automorphisms of the quadric
\jour Sb. Math.
\yr 2009
\vol 200
\issue 11
\pages 1715--1729
\mathnet{http://mi.mathnet.ru/eng/sm7513}
\crossref{https://doi.org/10.1070/SM2009v200n11ABEH004056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2590000}
\zmath{https://zbmath.org/?q=an:05685850}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1715S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600006}
\elib{https://elibrary.ru/item.asp?id=19066098}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-75649116094}
Linking options:
  • https://www.mathnet.ru/eng/sm7513
  • https://doi.org/10.1070/SM2009v200n11ABEH004056
  • https://www.mathnet.ru/eng/sm/v200/i11/p145
  • This publication is cited in the following 17 articles:
    1. Ivan Arzhantsev, “On conjugacy of additive actions in the affine Cremona group”, Quaestiones Mathematicae, 2024, 1  crossref
    2. Ivan Beldiev, “Gorenstein Algebras and Uniqueness of Additive Actions”, Results Math, 78:5 (2023)  crossref
    3. I. V. Arzhantsev, Yu. I. Zaitseva, “Equivariant completions of affine spaces”, Russian Math. Surveys, 77:4 (2022), 571–650  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    4. Yingqi Liu, “Additive actions on hyperquadrics of corank two”, era, 30:1 (2022), 1  crossref
    5. Sergey Dzhunusov, “On uniqueness of additive actions on complete toric varieties”, Journal of Algebra, 609 (2022), 642  crossref
    6. Viktoriia Borovik, Sergey Gaifullin, Anton Trushin, “Commutative actions on smooth projective quadrics”, Communications in Algebra, 50:12 (2022), 5468  crossref
    7. Shafarevich A., “Additive Actions on Toric Projective Hypersurfaces”, Results Math., 76:3 (2021), 145  crossref  mathscinet  isi
    8. Huang Zh., Montero P., “Fano Threefolds as Equivariant Compactifications of the Vector Group”, Mich. Math. J., 69:2 (2020), 341–368  crossref  mathscinet  isi
    9. Arzhantsev I. Romaskevich E., “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879  crossref  mathscinet  zmath  isi  scopus
    10. Devyatov R., “Unipotent Commutative Group Actions on Flag Varieties and Nilpotent Multiplications”, Transform. Groups, 20:1 (2015), 21–64  crossref  mathscinet  zmath  isi  elib  scopus
    11. Fu B., Hwang J.-M., “Uniqueness of Equivariant Compactifications of C-N By a Fano Manifold of Picard Number 1”, Math. Res. Lett., 21:1 (2014), 121–125  crossref  mathscinet  zmath  isi  elib  scopus
    12. R. A. Devyatov, “Commutative unipotent group actions on flag varieties and nilpotent multiplications”, Russian Math. Surveys, 69:5 (2014), 927–929  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Ivan Arzhantsev, Andrey Popovskiy, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 17  crossref
    14. Tanimoto Sh., Tschinkel Yu., “Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups”, Zeta functions in algebra and geometry, Contemp. Math., 566, eds. Campillo A., Cardona G., MelleHernandez A., Veys W., ZunigaGalindo W., Amer. Math. Soc, Providence, RI, 2012, 119–157  crossref  mathscinet  zmath  isi
    15. Arzhantsev I.V., “Flag varieties as equivariant compactifications of $\mathbb G^n_a$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786  crossref  mathscinet  zmath  isi  elib  scopus
    16. Arzhantsev I.V., Sharoyko E.V., “Hassett-Tschinkel correspondence: Modality and projective hypersurfaces”, J. Algebra, 348:1 (2011), 217–232  crossref  mathscinet  zmath  isi  elib  scopus
    17. Kishimoto T. Prokhorov Yu. Zaidenberg M., “Group actions on affine cones”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, ed. Daigle D. Ganong R. Koras M., Amer. Math. Soc., Providence, RI, 2011, 123–163  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:736
    Russian version PDF:223
    English version PDF:22
    References:53
    First page:5
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025