Abstract:
In this paper we study locally transitive actions of the commutative unipotent group $\mathbb G_a^n$ on
a nondegenerate quadric in the projective space $\mathbb P^{n+1}$. It is shown that for each $n$ such an action is unique up to isomorphism.
Bibliography: 9 titles.
Keywords:
automorphisms of quadrics, locally transitive actions.
\Bibitem{Sha09}
\by E.~V.~Sharoiko
\paper Hassett-Tschinkel correspondence and automorphisms of the quadric
\jour Sb. Math.
\yr 2009
\vol 200
\issue 11
\pages 1715--1729
\mathnet{http://mi.mathnet.ru/eng/sm7513}
\crossref{https://doi.org/10.1070/SM2009v200n11ABEH004056}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2590000}
\zmath{https://zbmath.org/?q=an:05685850}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009SbMat.200.1715S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275236600006}
\elib{https://elibrary.ru/item.asp?id=19066098}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-75649116094}
Linking options:
https://www.mathnet.ru/eng/sm7513
https://doi.org/10.1070/SM2009v200n11ABEH004056
https://www.mathnet.ru/eng/sm/v200/i11/p145
This publication is cited in the following 17 articles:
Ivan Arzhantsev, “On conjugacy of additive actions in the affine Cremona group”, Quaestiones Mathematicae, 2024, 1
Ivan Beldiev, “Gorenstein Algebras and Uniqueness of Additive Actions”, Results Math, 78:5 (2023)
I. V. Arzhantsev, Yu. I. Zaitseva, “Equivariant completions of affine spaces”, Russian Math. Surveys, 77:4 (2022), 571–650
Yingqi Liu, “Additive actions on hyperquadrics of corank two”, era, 30:1 (2022), 1
Sergey Dzhunusov, “On uniqueness of additive actions on complete toric varieties”, Journal of Algebra, 609 (2022), 642
Viktoriia Borovik, Sergey Gaifullin, Anton Trushin, “Commutative actions on smooth projective quadrics”, Communications in Algebra, 50:12 (2022), 5468
Shafarevich A., “Additive Actions on Toric Projective Hypersurfaces”, Results Math., 76:3 (2021), 145
Huang Zh., Montero P., “Fano Threefolds as Equivariant Compactifications of the Vector Group”, Mich. Math. J., 69:2 (2020), 341–368
Arzhantsev I. Romaskevich E., “Additive actions on toric varieties”, Proc. Amer. Math. Soc., 145:5 (2017), 1865–1879
Devyatov R., “Unipotent Commutative Group Actions on Flag Varieties and Nilpotent Multiplications”, Transform. Groups, 20:1 (2015), 21–64
Fu B., Hwang J.-M., “Uniqueness of Equivariant Compactifications of C-N By a Fano Manifold of Picard Number 1”, Math. Res. Lett., 21:1 (2014), 121–125
R. A. Devyatov, “Commutative unipotent group actions on flag varieties and nilpotent multiplications”, Russian Math. Surveys, 69:5 (2014), 927–929
Ivan Arzhantsev, Andrey Popovskiy, Springer Proceedings in Mathematics & Statistics, 79, Automorphisms in Birational and Affine Geometry, 2014, 17
Tanimoto Sh., Tschinkel Yu., “Height zeta functions of equivariant compactifications of semi-direct products of algebraic groups”, Zeta functions in algebra and geometry, Contemp. Math., 566, eds. Campillo A., Cardona G., MelleHernandez A., Veys W., ZunigaGalindo W., Amer. Math. Soc, Providence, RI, 2012, 119–157
Arzhantsev I.V., “Flag varieties as equivariant compactifications of $\mathbb G^n_a$”, Proc. Amer. Math. Soc., 139:3 (2011), 783–786
Arzhantsev I.V., Sharoyko E.V., “Hassett-Tschinkel correspondence: Modality and projective hypersurfaces”, J. Algebra, 348:1 (2011), 217–232
Kishimoto T. Prokhorov Yu. Zaidenberg M., “Group actions on affine cones”, Affine algebraic geometry, CRM Proc. Lecture Notes, 54, ed. Daigle D. Ganong R. Koras M., Amer. Math. Soc., Providence, RI, 2011, 123–163