Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2010, Volume 201, Issue 1, Pages 1–21
DOI: https://doi.org/10.1070/SM2010v201n01ABEH004063
(Mi sm7370)
 

This article is cited in 27 scientific papers (total in 27 papers)

Cox rings, semigroups and automorphisms of affine algebraic varieties

I. V. Arzhantsev, S. A. Gaifullin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We study the Cox realization of an affine variety, that is, a canonical representation of a normal affine variety with finitely generated divisor class group as a quotient of a factorially graded affine variety by an action of the Neron-Severi quasitorus. The realization is described explicitly for the quotient space of a linear action of a finite group. A universal property of this realization is proved, and some results in the divisor theory of an abstract semigroup emerging in this context are given. We show that each automorphism of an affine variety can be lifted to an automorphism of the Cox ring normalizing the grading. It follows that the automorphism group of an affine toric variety of dimension 2 without nonconstant invertible regular functions has infinite dimension. We obtain a wild automorphism of the three-dimensional quadratic cone that rises to the Anick automorphism of the polynomial algebra in four variables.
Bibliography: 22 titles.
Keywords: affine variety, quotient, divisor theory of a semigroup, toric variety, wild automorphism.
Received: 10.10.2008 and 06.06.2009
Bibliographic databases:
UDC: 512.711+512.745
MSC: Primary 14R20; Secondary 14L30, 14J50
Language: English
Original paper language: Russian
Citation: I. V. Arzhantsev, S. A. Gaifullin, “Cox rings, semigroups and automorphisms of affine algebraic varieties”, Sb. Math., 201:1 (2010), 1–21
Citation in format AMSBIB
\Bibitem{ArzGai10}
\by I.~V.~Arzhantsev, S.~A.~Gaifullin
\paper Cox rings, semigroups and automorphisms of affine algebraic varieties
\jour Sb. Math.
\yr 2010
\vol 201
\issue 1
\pages 1--21
\mathnet{http://mi.mathnet.ru/eng/sm7370}
\crossref{https://doi.org/10.1070/SM2010v201n01ABEH004063}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2641086}
\zmath{https://zbmath.org/?q=an:1201.14040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201....1A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277376300001}
\elib{https://elibrary.ru/item.asp?id=19066158}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950311307}
Linking options:
  • https://www.mathnet.ru/eng/sm7370
  • https://doi.org/10.1070/SM2010v201n01ABEH004063
  • https://www.mathnet.ru/eng/sm/v201/i1/p3
  • This publication is cited in the following 27 articles:
    1. Wolfram Decker, Lakshmi Ramesh, Johannes Schmitt, Algorithms and Computation in Mathematics, 32, The Computer Algebra System OSCAR, 2025, 297  crossref
    2. Ryo Yamagishi, “Moduli of G-constellations and crepant resolutions II: The Craw–Ishii conjecture”, Duke Math. J., 174:2 (2025)  crossref
    3. Lukas Braun, Joaquín Moraga, “Iteration of Cox rings of klt singularities”, Journal of Topology, 17:1 (2024)  crossref
    4. Viktoriia Borovik, Sergey Gaifullin, “Isolated torus invariants and automorphism groups of rigid varieties”, Journal of Algebra, 2024  crossref
    5. V. V. Kikteva, “On the connectedness of the automorphism group of an affine toric variety”, Sb. Math., 215:10 (2024), 1351–1373  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    6. A. N. Trushin, “Graded Automorphisms of the Algebra of Polynomials in Three Variables”, Math. Notes, 113:5 (2023), 736–740  mathnet  crossref  crossref  mathscinet
    7. Joaquín Moraga, “Small Quotient Minimal Log Discrepancies”, Michigan Math. J., 73:3 (2023)  crossref
    8. S. A. Gaifullin, D. A. Chunaev, “Varieties with a torus action of complexity one having a finite number of automorphism group orbits”, J. Math. Sci., 284:4 (2024), 442–450  mathnet  crossref
    9. Braun L., “Gorensteinness and Iteration of Cox Rings For Fano Type Varieties”, Math. Z., 301:1 (2022), 1047–1061  crossref  mathscinet  isi  scopus
    10. Lukas Braun, Stefano Filipazzi, Joaquín Moraga, Roberto Svaldi, “The Jordan property for local fundamental groups”, Geom. Topol., 26:1 (2022), 283  crossref
    11. Ivan Arzhantsev, Mikhail Zaidenberg, “Tits-type Alternative for Groups Acting on Toric Affine Varieties”, International Mathematics Research Notices, 2022:11 (2022), 8162  crossref
    12. H. Flenner, S. Kaliman, M. Zaidenberg, “Cancellation for Surfaces Revisited”, Memoirs of the AMS, 278:1371 (2022)  crossref
    13. Anton Trushin, “Gradings allowing wild automorphisms”, J. Algebra Appl., 21:08 (2022)  crossref
    14. Regeta A., van Santen I., “Characterizing Smooth Affine Spherical Varieties Via the Automorphism Group”, J. Ecole Polytech.-Math., 8 (2021), 379–414  crossref  mathscinet  isi
    15. Donten-Bury M., Grab M., “Crepant Resolutions of 3-Dimensional Quotient Singularities Via Cox Rings”, Exp. Math., 28:2 (2019), 161–180  crossref  mathscinet  zmath  isi
    16. Gaifullin S., Shafarevich A., “Flexibility of Normal Affine Horospherical Varieties”, Proc. Amer. Math. Soc., 147:8 (2019), 3317–3330  crossref  mathscinet  zmath  isi
    17. Yamagishi R., “On Smoothness of Minimal Models of Quotient Singularities By Finite Subgroups of Sln(C)”, Glasg. Math. J., 60:3 (2018), 603–634  crossref  mathscinet  zmath  isi  scopus
    18. Arzhantsev I., Braun L., Hausen J., Wrobel M., “Log Terminal Singularities, Platonic Tuples and Iteration of Cox Rings”, Eur. J. Math., 4:1, 1, SI (2018), 242–312  crossref  mathscinet  zmath  isi  scopus
    19. Donten-Bury M., Keicher S., “Computing resolutions of quotient singularities”, J. Algebra, 472 (2017), 546–572  crossref  mathscinet  zmath  isi  scopus
    20. Donten-Bury M., Wisniewski J.A., “on 81 Symplectic Resolutions of a 4-Dimensional Quotient By a Group of Order 32”, Kyoto J. Math., 57:2 (2017), 395–434  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1334
    Russian version PDF:591
    English version PDF:53
    References:127
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025