Abstract:
A problem on noncommutative holomorphic functional calculus is considered for a Banach module over a finite-dimensional nilpotent Lie algebra. As the main result, the transversality property of algebras of noncommutative holomorphic functions with respect to the Taylor spectrum is established for a family of bounded linear operators generating a Heisenberg algebra.
Bibliography: 25 titles.
Keywords:
holomorphic function of elements of a Lie algebra, Taylor spectrum, transversality property, inverting the Fréchet completion.
\Bibitem{Dos10}
\by A.~A.~Dosi
\paper The Taylor spectrum and transversality for a~Heisenberg algebra of operators
\jour Sb. Math.
\yr 2010
\vol 201
\issue 3
\pages 355--375
\mathnet{http://mi.mathnet.ru/eng/sm7306}
\crossref{https://doi.org/10.1070/SM2010v201n03ABEH004076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655839}
\zmath{https://zbmath.org/?q=an:1214.46031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010SbMat.201..355D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000279452200003}
\elib{https://elibrary.ru/item.asp?id=19066191}
Linking options:
https://www.mathnet.ru/eng/sm7306
https://doi.org/10.1070/SM2010v201n03ABEH004076
https://www.mathnet.ru/eng/sm/v201/i3/p39
This publication is cited in the following 4 articles:
O. Yu. Aristov, “Razlozhenie algebry analiticheskikh funktsionalov na svyaznoi kompleksnoi gruppe Li i ee popolnenii v iterirovannye analiticheskie smesh-proizvedeniya”, Algebra i analiz, 36:4 (2024), 1–37
Anar Dosi, “Noncommutative Localizations of Lie-Complete Rings”, Communications in Algebra, 44:11 (2016), 4892
A. Dosi, “Noncommutative affine spaces and Lie-complete rings”, C. R. Math. Acad. Sci. Paris, 353:2 (2015), 149–153
A. Dosi, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 191–216