Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 7, Pages 1071–1089
DOI: https://doi.org/10.1070/SM2002v193n07ABEH000670
(Mi sm670)
 

This article is cited in 16 scientific papers (total in 16 papers)

Beta-integrals and finite orthogonal systems of Wilson polynomials

Yu. A. Neretin

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
References:
Abstract: The integral
12π|3k=1Γ(ak+is)Γ(2is)Γ(b+is)|2ds=Γ(ba1a2a3)1k<l3Γ(ak+al)3k=1Γ(bak)
is calculated and the system of orthogonal polynomials with weight equal to the corresponding integrand is constructed. This weight decreases polynomially, therefore only finitely many of its moments converge. As a result the system of orthogonal polynomials is finite.
Systems of orthogonal polynomials related to 5H5-Dougall's formula and the Askey integral is also constructed. All the three systems consist of Wilson polynomials outside the domain of positiveness of the usual weight.
Received: 20.11.2001
Bibliographic databases:
UDC: 517.444+517.588+517.587
MSC: 33D45, 33D60, 33D05
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Beta-integrals and finite orthogonal systems of Wilson polynomials”, Sb. Math., 193:7 (2002), 1071–1089
Citation in format AMSBIB
\Bibitem{Ner02}
\by Yu.~A.~Neretin
\paper Beta-integrals and finite orthogonal systems of Wilson polynomials
\jour Sb. Math.
\yr 2002
\vol 193
\issue 7
\pages 1071--1089
\mathnet{http://mi.mathnet.ru/eng/sm670}
\crossref{https://doi.org/10.1070/SM2002v193n07ABEH000670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1936853}
\zmath{https://zbmath.org/?q=an:1052.33008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000178959400006}
\elib{https://elibrary.ru/item.asp?id=13392439}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036662048}
Linking options:
  • https://www.mathnet.ru/eng/sm670
  • https://doi.org/10.1070/SM2002v193n07ABEH000670
  • https://www.mathnet.ru/eng/sm/v193/i7/p131
  • This publication is cited in the following 16 articles:
    1. David K. Kolchmeyer, “von Neumann algebras in JT gravity”, J. High Energ. Phys., 2023:6 (2023)  crossref
    2. Neretin Yu.A., “On a C-2-Valued Integral Index Transform and Bilateral Hypergeometric Series”, Integral Transform. Spec. Funct., 2022  crossref  isi  scopus
    3. Neretin Yu.A., “An Analog of the Dougall Formula and of the de Branges-Wilson Integral”, Ramanujan J., 54:1 (2021), 93–106  crossref  mathscinet  isi
    4. Molchanov V.F. Neretin Yu.A., “A Pair of Commuting Hypergeometric Operators on the Complex Plane and Bispectrality”, J. Spectr. Theory, 11:2 (2021), 509–586  crossref  mathscinet  isi
    5. Yury A. Neretin, “Barnes–Ismagilov Integrals and Hypergeometric Functions of the Complex Field”, SIGMA, 16 (2020), 072, 20 pp.  mathnet  crossref
    6. Cunden F.D., Mezzadri F., O'Connell N., Simm N., “Moments of Random Matrices and Hypergeometric Orthogonal Polynomials”, Commun. Math. Phys., 369:3 (2019), 1091–1145  crossref  mathscinet  zmath  isi
    7. Cuenca C., “Bc Type Z-Measures and Determinantal Point Processes”, Adv. Math., 334 (2018), 1–80  crossref  mathscinet  zmath  isi  scopus
    8. Cuenca C., “Markov Processes on the Duals to Infinite-Dimensional Classical Lie Groups”, Ann. Inst. Henri Poincare-Probab. Stat., 54:3 (2018), 1359–1407  crossref  mathscinet  zmath  isi  scopus
    9. G. I. Olshanskii, A. A. Osinenko, “Multivariate Jacobi Polynomials and the Selberg Integral”, Funct. Anal. Appl., 46:4 (2012), 262–278  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    10. Bouzeffour F., “A sampling theorem related to the Wilson transform”, J. Difference Equ. Appl., 14:5 (2008), 513–529  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    11. Seppanen H., “Branching laws for minimal holomorphic representations”, J. Funct. Anal., 251:1 (2007), 174–209  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    12. Seppänen H., “Branching of some holomorphic representations of SO(2,n)”, J. Lie Theory, 17:1 (2007), 191–227  mathscinet  zmath  isi  elib
    13. Yu. A. Neretin, “Perturbations of Jacobi polynomials and piecewise hypergeometric orthogonal systems”, Sb. Math., 197:11 (2006), 1607–1633  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    14. Yu. A. Neretin, “Some Continuous Analogs of the Expansion in Jacobi Polynomials and Vector-Valued Orthogonal Bases”, Funct. Anal. Appl., 39:2 (2005), 106–119  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    15. Borodin A., Olshanski G., “Random partitions and the gamma kernel”, Adv. Math., 194:1 (2005), 141–202  crossref  mathscinet  zmath  isi  elib  scopus  scopus  scopus
    16. Groenevelt W., “The Wilson function transform”, Int. Math. Res. Not., 2003, no. 52, 2779–2817  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:818
    Russian version PDF:290
    English version PDF:54
    References:161
    First page:3
     
      Contact us:
    math-net2025_09@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025