Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 9, Pages 1367–1407
DOI: https://doi.org/10.1070/SM2008v199n09ABEH003964
(Mi sm3941)
 

This article is cited in 42 scientific papers (total in 42 papers)

Embedding theorems in constructive approximation

B. V. Simonova, S. Yu. Tikhonovbc

a Volgograd State Technical University
b Scuola Normale Superiore in Pisa
c Institució Catalana de Recerca i Estudis Avancats
References:
Abstract: Necessary and sufficient conditions for the accuracy of embedding theorems of various function classes are obtained. The main result of the paper is a criterion for embeddings between generalized Weyl-Nikol'skiǐ and generalized Lipschitz classes. To define the Weyl-Nikol'skiǐ classes we use the concept of a (λ,β)-derivative, which is a generalization of the derivative in the sense of Weyl. As corollaries, estimates for the norms and moduli of smoothness of transformed Fourier series are obtained.
Bibliography: 59 titles.
Received: 10.09.2007 and 07.03.2008
Bibliographic databases:
UDC: 517.518.23+517.518.83
MSC: Primary 46E35, 26A33, 41A17; Secondary 26A16, 42A45
Language: English
Original paper language: Russian
Citation: B. V. Simonov, S. Yu. Tikhonov, “Embedding theorems in constructive approximation”, Sb. Math., 199:9 (2008), 1367–1407
Citation in format AMSBIB
\Bibitem{SimTik08}
\by B.~V.~Simonov, S.~Yu.~Tikhonov
\paper Embedding theorems in constructive approximation
\jour Sb. Math.
\yr 2008
\vol 199
\issue 9
\pages 1367--1407
\mathnet{http://mi.mathnet.ru/eng/sm3941}
\crossref{https://doi.org/10.1070/SM2008v199n09ABEH003964}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466856}
\zmath{https://zbmath.org/?q=an:1172.46023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008SbMat.199.1367S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262711500003}
\elib{https://elibrary.ru/item.asp?id=20359355}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-66149135683}
Linking options:
  • https://www.mathnet.ru/eng/sm3941
  • https://doi.org/10.1070/SM2008v199n09ABEH003964
  • https://www.mathnet.ru/eng/sm/v199/i9/p107
  • This publication is cited in the following 42 articles:
    1. N. V. Laktionova, K. V. Runovskii, O. A. Shpyrko, “Bernstein-Type estimates for periodic functions of several variables with generalized smoothness”, Mat. Zametki, 117:4 (2025), 626–629  mathnet  mathnet  crossref
    2. N. V. Laktionova, K. V. Runovskii, “Direct Theorems on Approximation of Periodic Functions with High Generalized Smoothness”, Math. Notes, 113:3 (2023), 469–472  mathnet  crossref  crossref  mathscinet
    3. Óscar Domínguez, Sergey Tikhonov, “Function Spaces of Logarithmic Smoothness: Embeddings and Characterizations”, Memoirs of the AMS, 282:1393 (2023)  crossref
    4. K. V. Runovskii, N. V. Laktionova, “Inverse Theorems on the Approximation of Periodic Functions with High Generalized Smoothness”, Math. Notes, 111:2 (2022), 320–323  mathnet  crossref  crossref  mathscinet  isi
    5. O. L. Vinogradov, “On the constants in the inverse theorems for the norms of derivatives”, Siberian Math. J., 63:3 (2022), 438–450  mathnet  crossref  crossref
    6. S. Artamonov, K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. II”, Eurasian Math. J., 13:4 (2022), 18–43  mathnet  crossref  mathscinet
    7. K. V. Runovskii, “Multiplicator type operators and approximation of periodic functions of one variable by trigonometric polynomials”, Sb. Math., 212:2 (2021), 234–264  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. I. E. Simonova, B. V. Simonov, “Trigonometric series with coefficients general monotone with respect to subsequences”, Russian Math. (Iz. VUZ), 65:1 (2021), 8–26  mathnet  crossref  crossref  isi
    9. A. S. Belov, M. I. Dyachenko, S. Yu. Tikhonov, “Functions with general monotone Fourier coefficients”, Russian Math. Surveys, 76:6 (2021), 951–1017  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    10. Simonov V B., “Estimates of Functions With Transformed Double Fourier Series”, Stud. Sci. Math. Hung., 58:1 (2021), 32–83  crossref  mathscinet  isi
    11. Testici A., “On Derivative of Trigonometric Polynomials and Characterizations of Modulus of Smoothness in Weighted Lebesgue Space With Variable Exponent”, Period. Math. Hung., 80:1 (2020), 59–73  crossref  mathscinet  isi
    12. A. A. Jumabayeva, B. V. Simonov, “Transformation of Fourier Series by Means of General Monotone Sequences”, Math. Notes, 107:5 (2020), 740–758  mathnet  crossref  crossref  mathscinet  isi  elib
    13. Gorbachev V D. Ivanov V.I. Tikhonov S.Yu., “Sharp Approximation Theorems and Fourier Inequalities in the Dunkl Setting”, J. Approx. Theory, 258 (2020), 105462  crossref  mathscinet  isi
    14. Artamonov S. Runovski K. Schmeisser H.-J., “Approximation By Bandlimited Functions, Generalized K-Functionals and Generalized Moduli of Smoothness”, Anal. Math., 45:1 (2019), 1–24  crossref  mathscinet  zmath  isi  scopus
    15. K. V. Runovskii, “Generalized Smoothness and Approximation of Periodic Functions in the Spaces $L_p$, $1<p<+\infty$”, Math. Notes, 106:3 (2019), 412–422  mathnet  crossref  crossref  mathscinet  isi  elib
    16. M. I. Dyachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of functions and Fourier coefficients”, Sb. Math., 210:7 (2019), 994–1018  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. Jafarov S.Z., “On Moduli of Smoothness of Functions in Orlicz Spaces”, Tbil. Math. J., 12:3 (2019), 121–129  crossref  mathscinet  zmath  isi
    18. Jafarov S.Z., “Best Trigonometric Approximation and Modulus of Smoothness of Functions in Weighted Grand Lebesgue Spaces”, Bull. Karaganda Univ-Math., 94:2 (2019), 26–32  crossref  isi
    19. Yurii Kolomoitsev, Tetiana Lomako, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 183  crossref
    20. Ainur Jumabayeva, Boris Simonov, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 159  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1181
    Russian version PDF:372
    English version PDF:30
    References:128
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025