Abstract:
Let A be the generator of a uniformly bounded C0-semigroup in a Banach space X such that A has a trivial kernel and a dense range. The question whether A−1 is a generator of a C0-semigroup is considered. It is shown that the answer is negative in general for X=ℓp, p∈(1,2)∪(2,∞). In the case when X is a Hilbert space it is proved that there exist C0-semigroups (etA), t⩾0, of arbitrarily slow growth at infinity such that the densely defined operator A−1 is not the generator of a C0-semigroup.
Bibliography: 19 titles.
\Bibitem{GomZwaTom07}
\by A.~M.~Gomilko, H.~Zwart, Yu.~Tomilov
\paper Inverse operator of the generator of a~$C_0$-semigroup
\jour Sb. Math.
\yr 2007
\vol 198
\issue 8
\pages 1095--1110
\mathnet{http://mi.mathnet.ru/eng/sm3790}
\crossref{https://doi.org/10.1070/SM2007v198n08ABEH003874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2355434}
\zmath{https://zbmath.org/?q=an:1136.47029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250726000009}
\elib{https://elibrary.ru/item.asp?id=9541663}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35948946519}
Linking options:
https://www.mathnet.ru/eng/sm3790
https://doi.org/10.1070/SM2007v198n08ABEH003874
https://www.mathnet.ru/eng/sm/v198/i8/p35
This publication is cited in the following 13 articles:
Masashi Wakaiki, “Characterizations of the Crandall–Pazy Class of C0-semigroups on Hilbert Spaces and Their Application to Decay Estimates”, Journal of Functional Analysis, 2025, 110902
Masashi Wakaiki, “Decay estimates for Cayley transforms and inverses of semigroup generators via the B-calculus”, J. Evol. Equ., 24:2 (2024)
Masashi Wakaiki, “Decay Rate of \varvecexp(A−1t)A−1 on a Hilbert Space and the Crank–Nicolson Scheme with Smooth Initial Data”, Integr. Equ. Oper. Theory, 95:4 (2023)
Batty Ch., Gomilko A., Tomilov Yu., “A Besov Algebra Calculus For Generators of Operator Semigroups and Related Norm-Estimates”, Math. Ann., 379:1-2 (2021), 23–93
Li M., Pastor J., Piskarev S., “Inverses of Generators of Integrated Fractional Resolvent Operator Functions”, Fract. Calc. Appl. Anal., 21:6 (2018), 1542–1564
Fackler S., “A short counterexample to the inverse generator problem on non-Hilbertian reflexive L p -spaces”, Arch. Math., 106:4 (2016), 383–389
Schwenninger F.L., Zwart H., “Generators With a Closure Relation”, Oper. Matrices, 8:1 (2014), 157–165
Gomilko A., Zwart H., Besseling N., “Growth of semigroups in discrete and continuous time”, Studia Math., 206:3 (2011), 273–292
Gomilko O., “Optimal estimates for the semigroup generated by the classical Volterra operator on Lp-spaces”, Semigroup Forum, 83:2 (2011), 343–350
Haak B.H., “On the Carleson measure criterion in linear systems theory”, Complex Anal. Oper. Theory, 4:2 (2010), 281–299
deLaubenfels R., “Inverses of generators of nonanalytic semigroups”, Studia Math., 191:1 (2009), 11–38
Eisner T., Zwart H., “The growth of a C0-semigroup characterised by its cogenerator”, J. Evol. Equ., 8:4 (2008), 749–764