Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 10, Pages 1417–1433
DOI: https://doi.org/10.1070/SM2006v197n10ABEH003805
(Mi sm3698)
 

This article is cited in 6 scientific papers (total in 6 papers)

Minkowski sum of a parallelotope and a segment

V. P. Grishukhin

Central Economics and Mathematics Institute, RAS
References:
Abstract: Not every parallelotope P is such that the Minkowski sum P+Se of P with a segment Se of the straight line along a vector e is a parallelotope. If P+Se is a parallelotope, then P is said to be free along e. The parallelotope P+Se is not always a Voronoĭ polytope. The well-known Voronoĭ conjecture states that every parallelotope is affinely equivalent to a Voronoĭ polytope. An attempt is made to prove Voronoĭ's conjecture for P+Se. For that a class P(e) of canonically defined parallelotopes that are free along e is introduced. It is proved that P+Se is affinely equivalent to a Voronoĭ polytope if and only if P is a direct sum of parallelotopes of class P(e).
This simple case of the proof of Voronoĭ's conjecture is an instructive example for understanding the general case.
Bibliography: 10 titles.
Received: 19.05.2005 and 23.03.2006
Bibliographic databases:
UDC: 511.6+514.174.6
MSC: Primary 52C22; Secondary 51M20, 52B11, 52B20, 52C07
Language: English
Original paper language: Russian
Citation: V. P. Grishukhin, “Minkowski sum of a parallelotope and a segment”, Sb. Math., 197:10 (2006), 1417–1433
Citation in format AMSBIB
\Bibitem{Gri06}
\by V.~P.~Grishukhin
\paper Minkowski sum of a parallelotope and a segment
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1417--1433
\mathnet{http://mi.mathnet.ru/eng/sm3698}
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2310113}
\zmath{https://zbmath.org/?q=an:1141.52024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000009}
\elib{https://elibrary.ru/item.asp?id=9296528}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846597565}
Linking options:
  • https://www.mathnet.ru/eng/sm3698
  • https://doi.org/10.1070/SM2006v197n10ABEH003805
  • https://www.mathnet.ru/eng/sm/v197/i10/p15
  • This publication is cited in the following 6 articles:
    1. Mathieu Dutour Sikirić, Wessel van Woerden, “Complete classification of six-dimensional iso-edge domains”, Acta Crystallogr A Found Adv, 81:1 (2025), 9  crossref
    2. Alexey Garber, “Voronoi conjecture for five-dimensional parallelohedra”, Invent. math., 2025  crossref
    3. Viacheslav Grishukhin, “Voronoi conjecture for special free parallelotopes”, Moscow J. Comb. Number Th., 10:2 (2021), 83  crossref
    4. A. A. Gavrilyuk, “Geometry of lifts of tilings of Euclidean spaces”, Proc. Steklov Inst. Math., 288 (2015), 39–55  mathnet  crossref  crossref  isi  elib
    5. Mathieu Dutour Sikirić, Viacheslav Grishukhin, Alexander Magazinov, “On the sum of a parallelotope and a zonotope”, European Journal of Combinatorics, 42 (2014), 49  crossref  mathscinet  zmath
    6. A. N. Magazinov, “Voronoi's conjecture for extensions of Voronoi parallelohedra”, Russian Math. Surveys, 69:4 (2014), 763–764  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:556
    Russian version PDF:243
    English version PDF:22
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025