Abstract:
Not every parallelotope P is such that the Minkowski sum P+Se
of P with a segment Se of the straight line along a
vector e is a parallelotope. If P+Se is a parallelotope, then
P is said to be free alonge. The parallelotope
P+Se is not always a Voronoĭ polytope. The well-known
Voronoĭ conjecture states that every parallelotope is
affinely equivalent to a Voronoĭ polytope. An attempt is made
to prove Voronoĭ's conjecture for
P+Se. For that a class P(e) of canonically defined parallelotopes that are
free along e is introduced. It is proved that P+Se is affinely
equivalent to a Voronoĭ polytope if and only if P is a direct
sum of parallelotopes of class P(e).
This simple case of the proof of Voronoĭ's conjecture is an
instructive example for understanding the general case.
Bibliography: 10 titles.
\Bibitem{Gri06}
\by V.~P.~Grishukhin
\paper Minkowski sum of a parallelotope and a segment
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1417--1433
\mathnet{http://mi.mathnet.ru/eng/sm3698}
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003805}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2310113}
\zmath{https://zbmath.org/?q=an:1141.52024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000009}
\elib{https://elibrary.ru/item.asp?id=9296528}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846597565}
Linking options:
https://www.mathnet.ru/eng/sm3698
https://doi.org/10.1070/SM2006v197n10ABEH003805
https://www.mathnet.ru/eng/sm/v197/i10/p15
This publication is cited in the following 6 articles:
Mathieu Dutour Sikirić, Wessel van Woerden, “Complete classification of six-dimensional iso-edge domains”, Acta Crystallogr A Found Adv, 81:1 (2025), 9
Alexey Garber, “Voronoi conjecture for five-dimensional parallelohedra”, Invent. math., 2025
Viacheslav Grishukhin, “Voronoi conjecture for special free parallelotopes”, Moscow J. Comb. Number Th., 10:2 (2021), 83
A. A. Gavrilyuk, “Geometry of lifts of tilings of Euclidean spaces”, Proc. Steklov Inst. Math., 288 (2015), 39–55
Mathieu Dutour Sikirić, Viacheslav Grishukhin, Alexander Magazinov, “On the sum of a parallelotope and a zonotope”, European Journal of Combinatorics, 42 (2014), 49
A. N. Magazinov, “Voronoi's conjecture for extensions of Voronoi parallelohedra”, Russian Math. Surveys, 69:4 (2014), 763–764