Citation:
G. M. Henkin, “Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications”, Math. USSR-Sb., 7:4 (1969), 597–616
\Bibitem{Hen69}
\by G.~M.~Henkin
\paper Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications
\jour Math. USSR-Sb.
\yr 1969
\vol 7
\issue 4
\pages 597--616
\mathnet{http://mi.mathnet.ru/eng/sm3573}
\crossref{https://doi.org/10.1070/SM1969v007n04ABEH001105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=249660}
\zmath{https://zbmath.org/?q=an:0206.09004|0208.35102}
Linking options:
https://www.mathnet.ru/eng/sm3573
https://doi.org/10.1070/SM1969v007n04ABEH001105
https://www.mathnet.ru/eng/sm/v120/i4/p611
This publication is cited in the following 71 articles:
R. Michael Range, “From Cauchy, via Martinelli–Bochner and Leray, to the Henkin–Ramirez kernel”, Bol. Soc. Mat. Mex., 29:S1 (2023)
Timothy G. Clos, “Solvability of the Gleason Problem on a Class of Bounded Pseudoconvex Domains”, Complex Anal. Oper. Theory, 16:4 (2022)
L. K. Ha, T. K. An, “\boldsymbol{L}^{\boldsymbol{p}} and Hölder Estimates for Cauchy–Riemann Equations on Convex Domain of Finite/Infinite Type with Piecewise Smooth Boundary in \boldsymbol{\mathbb{C}}^{\mathbf{2}}”, J. Contemp. Mathemat. Anal., 56:4 (2021), 225
Ly Kim Ha, “C^k-Estimates for \bar{\partial }-Equation on Certain Convex Domains of Infinite Type in \mathbb {C}^n”, J Geom Anal, 31:2 (2021), 2058
F. Forstnerič, “Mergelyan's and Arakelian's theorems for manifold-valued maps”, Mosc. Math. J., 19:3 (2019), 465–484
Ly Kim Ha, “Hölder and L^p Estimates for the {\bar{\partial }}-equation in a class of convex domains of infinite type in {\mathbb {C}}^n”, Monatsh Math, 190:3 (2019), 517
Shaban Khidr, “Holomorphic Approximation on Certain Weakly Pseudoconvex Domains in Cn”, Mathematics, 7:11 (2019), 1035
Steven G. Krantz, “Canonical kernels versus constructible kernels”, Rocky Mountain J. Math., 49:6 (2019)
Ly Kim Ha, “On Hölder Estimates with Loss of Order One for the ∂ ̄ \bar {\partial }
Equation on a Class of Convex Domains of Infinite Type in ℂ 3 \mathbb {C}^{3}”, Acta Math Vietnam, 44:2 (2019), 519
LY KIM HA, “-APPROXIMATION OF HOLOMORPHIC FUNCTIONS ON A CLASS OF CONVEX DOMAINS”, Bull. Aust. Math. Soc., 97:3 (2018), 446
B. Berndtsson, S. V. Kislyakov, R. G. Novikov, V. M. Polterovich, P. L. Polyakov, A. E. Tumanov, A. A. Shananin, C. L. Epstein, “Gennadi Markovich Henkin (obituary)”, Russian Math. Surveys, 72:3 (2017), 547–570
Ly Kim Ha, “Zero varieties for the Nevanlinna class in weakly pseudoconvex domains of maximal type F in \mathbb {C}^2 C 2”, Ann Glob Anal Geom, 51:4 (2017), 327
Ly Kim Ha, “Tangential Cauchy–Riemann Equations on Pseudoconvex Boundaries of Finite and Infinite Type in \mathbb {C}^2 C 2”, Results Math, 72:1-2 (2017), 105
Bourgain J., “on Uniformly Bounded Bases in Spaces of Holomorphic Functions”, Am. J. Math., 138:2 (2016), 571–584
Loredana Lanzani, Elias M. Stein, Association for Women in Mathematics Series, 4, Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1), 2016, 179
R. F. Shamoyan, S. M. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in \mathbb{C}^{n}”, Probl. anal. Issues Anal., 4(22):1 (2015), 73–94
S. Saber, “The \bar \partial -problem on q-pseudoconvex domains with applications”, Math. Slovaca, 63:3 (2013), 521
Loredana Lanzani, Elias M. Stein, “Cauchy-type integrals in several complex variables”, Bull. Math. Sci., 3:2 (2013), 241
Sayed Saber, “Global Boundary Regularity for the {\overline\partial} -problem on Strictly q-convex and q-concave Domains”, Complex Anal. Oper. Theory, 6:6 (2012), 1157
Sayed Saber, “Solvability of the tangential Cauchy-Riemann equations on boundaries of strictly q-convex domains”, Lobachevskii J Math, 32:3 (2011), 189