Processing math: 0%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1969, Volume 7, Issue 4, Pages 597–616
DOI: https://doi.org/10.1070/SM1969v007n04ABEH001105
(Mi sm3573)
 

This article is cited in 70 scientific papers (total in 71 papers)

Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications

G. M. Henkin
References:
Received: 10.10.1968
Bibliographic databases:
UDC: 517.551
MSC: 32A26, 32T05, 32A10
Language: English
Original paper language: Russian
Citation: G. M. Henkin, “Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications”, Math. USSR-Sb., 7:4 (1969), 597–616
Citation in format AMSBIB
\Bibitem{Hen69}
\by G.~M.~Henkin
\paper Integral representations of functions holomorphic in strictly pseudo-convex domains and some applications
\jour Math. USSR-Sb.
\yr 1969
\vol 7
\issue 4
\pages 597--616
\mathnet{http://mi.mathnet.ru/eng/sm3573}
\crossref{https://doi.org/10.1070/SM1969v007n04ABEH001105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=249660}
\zmath{https://zbmath.org/?q=an:0206.09004|0208.35102}
Linking options:
  • https://www.mathnet.ru/eng/sm3573
  • https://doi.org/10.1070/SM1969v007n04ABEH001105
  • https://www.mathnet.ru/eng/sm/v120/i4/p611
  • This publication is cited in the following 71 articles:
    1. R. Michael Range, “From Cauchy, via Martinelli–Bochner and Leray, to the Henkin–Ramirez kernel”, Bol. Soc. Mat. Mex., 29:S1 (2023)  crossref
    2. Timothy G. Clos, “Solvability of the Gleason Problem on a Class of Bounded Pseudoconvex Domains”, Complex Anal. Oper. Theory, 16:4 (2022)  crossref
    3. L. K. Ha, T. K. An, “\boldsymbol{L}^{\boldsymbol{p}} and Hölder Estimates for Cauchy–Riemann Equations on Convex Domain of Finite/Infinite Type with Piecewise Smooth Boundary in \boldsymbol{\mathbb{C}}^{\mathbf{2}}”, J. Contemp. Mathemat. Anal., 56:4 (2021), 225  crossref
    4. Ly Kim Ha, “C^k-Estimates for \bar{\partial }-Equation on Certain Convex Domains of Infinite Type in \mathbb {C}^n”, J Geom Anal, 31:2 (2021), 2058  crossref
    5. F. Forstnerič, “Mergelyan's and Arakelian's theorems for manifold-valued maps”, Mosc. Math. J., 19:3 (2019), 465–484  mathnet  crossref
    6. Ly Kim Ha, “Hölder and L^p Estimates for the {\bar{\partial }}-equation in a class of convex domains of infinite type in {\mathbb {C}}^n”, Monatsh Math, 190:3 (2019), 517  crossref
    7. Shaban Khidr, “Holomorphic Approximation on Certain Weakly Pseudoconvex Domains in Cn”, Mathematics, 7:11 (2019), 1035  crossref
    8. Steven G. Krantz, “Canonical kernels versus constructible kernels”, Rocky Mountain J. Math., 49:6 (2019)  crossref
    9. Ly Kim Ha, “On Hölder Estimates with Loss of Order One for the

      ̄
      \bar {\partial } Equation on a Class of Convex Domains of Infinite Type in

      3
      \mathbb {C}^{3}”, Acta Math Vietnam, 44:2 (2019), 519  crossref
    10. LY KIM HA, “-APPROXIMATION OF HOLOMORPHIC FUNCTIONS ON A CLASS OF CONVEX DOMAINS”, Bull. Aust. Math. Soc., 97:3 (2018), 446  crossref
    11. B. Berndtsson, S. V. Kislyakov, R. G. Novikov, V. M. Polterovich, P. L. Polyakov, A. E. Tumanov, A. A. Shananin, C. L. Epstein, “Gennadi Markovich Henkin (obituary)”, Russian Math. Surveys, 72:3 (2017), 547–570  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. Ly Kim Ha, “Zero varieties for the Nevanlinna class in weakly pseudoconvex domains of maximal type F in \mathbb {C}^2 C 2”, Ann Glob Anal Geom, 51:4 (2017), 327  crossref
    13. Ly Kim Ha, “Tangential Cauchy–Riemann Equations on Pseudoconvex Boundaries of Finite and Infinite Type in \mathbb {C}^2 C 2”, Results Math, 72:1-2 (2017), 105  crossref
    14. Bourgain J., “on Uniformly Bounded Bases in Spaces of Holomorphic Functions”, Am. J. Math., 138:2 (2016), 571–584  crossref  mathscinet  zmath  isi
    15. Loredana Lanzani, Elias M. Stein, Association for Women in Mathematics Series, 4, Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1), 2016, 179  crossref
    16. R. F. Shamoyan, S. M. Kurilenko, “On traces of analytic Herz and Bloch type spaces in bounded strongly pseudoconvex domains in \mathbb{C}^{n}”, Probl. anal. Issues Anal., 4(22):1 (2015), 73–94  mathnet  crossref  elib
    17. S. Saber, “The \bar \partial -problem on q-pseudoconvex domains with applications”, Math. Slovaca, 63:3 (2013), 521  crossref  mathscinet  zmath
    18. Loredana Lanzani, Elias M. Stein, “Cauchy-type integrals in several complex variables”, Bull. Math. Sci., 3:2 (2013), 241  crossref
    19. Sayed Saber, “Global Boundary Regularity for the
      {\overline\partial}
      -problem on Strictly q-convex and q-concave Domains”, Complex Anal. Oper. Theory, 6:6 (2012), 1157  crossref  mathscinet  zmath
    20. Sayed Saber, “Solvability of the tangential Cauchy-Riemann equations on boundaries of strictly q-convex domains”, Lobachevskii J Math, 32:3 (2011), 189  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:859
    Russian version PDF:517
    English version PDF:42
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025