Abstract:
The well-known formula for finding the area of a triangle in terms of its sides is generalized to volumes of polyhedra in the following way. It is proved that for a polyhedron (with triangular faces) with a given combinatorial structure K and with a given collection (l) of edge lengths there is a polynomial such that the volume of the polyhedron is a root of it, and the coefficients of the polynomial depend only on K and (l) and not on the concrete configuration of the polyhedron itself. A number of problems in the metric theory of polyhedra are solved as a consequence.
\Bibitem{Sab98}
\by I.~Kh.~Sabitov
\paper A generalized Heron--Tartaglia formula and some of its consequences
\jour Sb. Math.
\yr 1998
\vol 189
\issue 10
\pages 1533--1561
\mathnet{http://mi.mathnet.ru/eng/sm354}
\crossref{https://doi.org/10.1070/sm1998v189n10ABEH000354}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691297}
\zmath{https://zbmath.org/?q=an:0941.52020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078221100012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0039066483}
Linking options:
https://www.mathnet.ru/eng/sm354
https://doi.org/10.1070/sm1998v189n10ABEH000354
https://www.mathnet.ru/eng/sm/v189/i10/p105
This publication is cited in the following 37 articles:
S. N. Mikhalev, “A metric description of flexible octahedra”, Sb. Math., 214:7 (2023), 952–981
Nikolay Abrosimov, Alexander Kolpakov, Alexander Mednykh, “Euclidean volumes of hyperbolic knots”, Proc. Amer. Math. Soc., 2023
Sabitov I.Kh., Stepanov D.A., “Elimination of Parasitic Solutions in the Theory of Flexible Polyhedra”, Beitr. Algebr. Geom., 62:3 (2021), 687–703
Alexandrov V., “Necessary Conditions For the Extendibility of a First-Order Flex of a Polyhedron to Its Flex”, Beitr. Algebr. Geom., 61:2 (2020), 355–368
D. I. Sabitov, I. Kh. Sabitov, “Mnogochleny ob'ema dlya mnogogrannikov kombinatornogo tipa $n$-grannykh prizm v sluchayakh $n=5,6,7$”, Sib. elektron. matem. izv., 16 (2019), 439–448
Alexander A. Gaifullin, Leonid S. Ignashchenko, “Dehn invariant and scissors congruence of flexible polyhedra”, Proc. Steklov Inst. Math., 302 (2018), 130–145
D. I. Sabitov, I. Kh. Sabitov, “Kanonicheskie mnogochleny ob'ema dlya mnogogrannikov kombinatornogo tipa geksaedra”, Sib. elektron. matem. izv., 14 (2017), 1078–1087
Alexander A. Gaifullin, “The bellows conjecture for small flexible polyhedra in non-Euclidean spaces”, Mosc. Math. J., 17:2 (2017), 269–290
Aminov Yu.A., “Polyhedrons At the Nuclear Structure”, Probl. At. Sci. Technol., 2017, no. 3, 21–25
I. Kh. Sabitov, “The Moscow Mathematical Society and metric geometry: from Peterson to contemporary research”, Trans. Moscow Math. Soc., 77 (2016), 149–175
Chen Ch., Lin J., Liao M., Li G., Huang G., “Learning To Detect Salient Curves of Cartoon Images Based on Composition Rules”, 2016 11Th International Conference on Computer Science & Education (Iccse), International Conference on Computer Science & Education, IEEE, 2016, 808–813
A. A. Gaifullin, “Embedded flexible spherical cross-polytopes with nonconstant volumes”, Proc. Steklov Inst. Math., 288 (2015), 56–80
A. A. Gaifullin, “The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces”, Sb. Math., 206:11 (2015), 1564–1609
Kharazishvili A., “on Inscribed and Circumscribed Convex Polyhedra”, Proc. A Razmadze Math. Inst., 167 (2015), 123–129
Gaifullin A.A., “Sabitov Polynomials for Volumes of Polyhedra in Four Dimensions”, Adv. Math., 252 (2014), 586–611
A. A. Gaifullin, “Flexible cross-polytopes in spaces of constant curvature”, Proc. Steklov Inst. Math., 286 (2014), 77–113
Nikolay Abrosimov, Alexander Mednykh, Fields Institute Communications, 70, Rigidity and Symmetry, 2014, 1
A. D. Mednykh, “Brahmagupta formula for cyclic quadrilaterals in the hyperbolic plane”, Sib. elektron. matem. izv., 9 (2012), 247–255
I. Kh. Sabitov, “Algebraic methods for solution of polyhedra”, Russian Math. Surveys, 66:3 (2011), 445–505
P. Bibikov, “On algebraic dependencies in polygons and polyhedra”, Lobachevskii J Math, 32:2 (2011), 146