Abstract:
Let 1⩽p<∞, and let λ={λn} be a sequence of positive numbers with λn↓0. Denote by Ep(λ) the class of all functions f∈Lp(0,2π) for which the best approximation by trigonometric polynomials satisfies the condition E(p)n(f)=O(λn).
In this paper the relation between best approximations in different metrics is studied. Necessary and sufficient conditions are found for the imbedding Ep(λ)⊂Eq(μ) (1<p<q<∞), where {λn} and {μn} are positive sequences with λn↓0 and μn↓0.
Furthermore, it is proved that the condition of P. L. Ul'yanov
∞∑n=1nq/p−2λqn<∞(1⩽p<q<∞)
is not only sufficient but is also necessary for the imbedding Ep(λ)⊂Lq(0,2π).
The question of imbedding Ep(λ) in the space of continuous functions is also considered.
Bibliography: 7 titles.
\Bibitem{Kol77}
\by V.~I.~Kolyada
\paper Imbedding theorems and inequalities in various metrics for best approximations
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 2
\pages 171--189
\mathnet{http://mi.mathnet.ru/eng/sm2648}
\crossref{https://doi.org/10.1070/SM1977v031n02ABEH002297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=454492}
\zmath{https://zbmath.org/?q=an:0346.41024|0388.41015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FY72200004}
Linking options:
https://www.mathnet.ru/eng/sm2648
https://doi.org/10.1070/SM1977v031n02ABEH002297
https://www.mathnet.ru/eng/sm/v144/i2/p195
This publication is cited in the following 14 articles:
N. A. Ilyasov, “O poryadke ravnomernoi skhodimosti chastnykh kubicheskikh summ kratnykh trigonometricheskikh ryadov Fure na klassakh funktsii $H_{1,m}^{l}[\omega]$”, Tr. IMM UrO RAN, 21, no. 4, 2015, 161–177
M. E. Turova, “Otsenki nailuchshikh priblizhenii funktsii spektrom iz giperbolicheskikh krestov”, Mezhdunar. nauch.-issled. zhurn., 2015, no. 5-1(36), 29–31
Viktor I. Kolyada, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 27
E. S. Smailov, A. I. Takuadina, “O neuluchshaemosti predelnoi teoremy vlozheniya raznykh metrik v prostranstvakh Lorentsa s vesom Ermitta”, Ufimsk. matem. zhurn., 3:3 (2011), 140–151
N. A. Ilyasov, “Skorostnaya $L_p$-versiya kriteriya M. Rissa absolyutnoi skhodimosti trigonometricheskikh ryadov Fure”, Tr. IMM UrO RAN, 16, no. 4, 2010, 193–202
N. A. Il'yasov, “On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$”, Math. Notes, 78:4 (2005), 481–497
Kolyada V., Marcellan F., “Kernels and Best Approximations Related to the System of Ultraspherical Polynomials”, J. Approx. Theory, 133:2 (2005), 173–194
G. A. Akishev, “Obobschennaya sistema Khaara i teoremy vlozheniya v simmetrichnye prostranstva”, Fundament. i prikl. matem., 8:2 (2002), 319–334
N. A. Il'yasov, “On the Order of Approximation in the Uniform Metric by the Fejér–Zygmund Means on the Classes $E_p[\varepsilon]$”, Math. Notes, 69:5 (2001), 625–633
V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117
V. I. Kolyada, “On embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes”, Math. USSR-Sb., 55:2 (1986), 351–381
V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322
È. A. Storozhenko, “On a problem of Hardy-Littlewood”, Math. USSR-Sb., 47:2 (1984), 557–577
Oswald P., “Spline Approximation in the Lp-Metric, 0 Less-Than-Or-Equal-to P Less-Than-Or-Equal-to 1”, Math. Nachr., 94 (1980), 69–96