Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 31, Issue 2, Pages 171–189
DOI: https://doi.org/10.1070/SM1977v031n02ABEH002297
(Mi sm2648)
 

This article is cited in 14 scientific papers (total in 14 papers)

Imbedding theorems and inequalities in various metrics for best approximations

V. I. Kolyada
References:
Abstract: Let 1p<, and let λ={λn} be a sequence of positive numbers with λn0. Denote by Ep(λ) the class of all functions fLp(0,2π) for which the best approximation by trigonometric polynomials satisfies the condition E(p)n(f)=O(λn).
In this paper the relation between best approximations in different metrics is studied. Necessary and sufficient conditions are found for the imbedding Ep(λ)Eq(μ) (1<p<q<), where {λn} and {μn} are positive sequences with λn0 and μn0.
Furthermore, it is proved that the condition of P. L. Ul'yanov
n=1nq/p2λqn<(1p<q<)
is not only sufficient but is also necessary for the imbedding Ep(λ)Lq(0,2π).
The question of imbedding Ep(λ) in the space of continuous functions is also considered.
Bibliography: 7 titles.
Received: 31.12.1975
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A08, 41A50, 46E35; Secondary 26A86
Language: English
Original paper language: Russian
Citation: V. I. Kolyada, “Imbedding theorems and inequalities in various metrics for best approximations”, Math. USSR-Sb., 31:2 (1977), 171–189
Citation in format AMSBIB
\Bibitem{Kol77}
\by V.~I.~Kolyada
\paper Imbedding theorems and inequalities in various metrics for best approximations
\jour Math. USSR-Sb.
\yr 1977
\vol 31
\issue 2
\pages 171--189
\mathnet{http://mi.mathnet.ru/eng/sm2648}
\crossref{https://doi.org/10.1070/SM1977v031n02ABEH002297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=454492}
\zmath{https://zbmath.org/?q=an:0346.41024|0388.41015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977FY72200004}
Linking options:
  • https://www.mathnet.ru/eng/sm2648
  • https://doi.org/10.1070/SM1977v031n02ABEH002297
  • https://www.mathnet.ru/eng/sm/v144/i2/p195
  • This publication is cited in the following 14 articles:
    1. N. A. Ilyasov, “O poryadke ravnomernoi skhodimosti chastnykh kubicheskikh summ kratnykh trigonometricheskikh ryadov Fure na klassakh funktsii $H_{1,m}^{l}[\omega]$”, Tr. IMM UrO RAN, 21, no. 4, 2015, 161–177  mathnet  mathscinet  elib
    2. M. E. Turova, “Otsenki nailuchshikh priblizhenii funktsii spektrom iz giperbolicheskikh krestov”, Mezhdunar. nauch.-issled. zhurn., 2015, no. 5-1(36), 29–31  mathnet  elib
    3. Viktor I. Kolyada, Springer Proceedings in Mathematics & Statistics, 25, Recent Advances in Harmonic Analysis and Applications, 2012, 27  crossref
    4. E. S. Smailov, A. I. Takuadina, “O neuluchshaemosti predelnoi teoremy vlozheniya raznykh metrik v prostranstvakh Lorentsa s vesom Ermitta”, Ufimsk. matem. zhurn., 3:3 (2011), 140–151  mathnet  zmath
    5. N. A. Ilyasov, “Skorostnaya $L_p$-versiya kriteriya M. Rissa absolyutnoi skhodimosti trigonometricheskikh ryadov Fure”, Tr. IMM UrO RAN, 16, no. 4, 2010, 193–202  mathnet  elib
    6. N. A. Il'yasov, “On the Order of Decrease of Uniform Moduli of Smoothness for the Classes of Functions $E_{p,m}[\epsilon]$”, Math. Notes, 78:4 (2005), 481–497  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. Kolyada V., Marcellan F., “Kernels and Best Approximations Related to the System of Ultraspherical Polynomials”, J. Approx. Theory, 133:2 (2005), 173–194  crossref  mathscinet  zmath  isi
    8. G. A. Akishev, “Obobschennaya sistema Khaara i teoremy vlozheniya v simmetrichnye prostranstva”, Fundament. i prikl. matem., 8:2 (2002), 319–334  mathnet  mathscinet  zmath
    9. N. A. Il'yasov, “On the Order of Approximation in the Uniform Metric by the Fejér–Zygmund Means on the Classes $E_p[\varepsilon]$”, Math. Notes, 69:5 (2001), 625–633  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. V. I. Kolyada, “Rearrangements of functions and embedding theorems”, Russian Math. Surveys, 44:5 (1989), 73–117  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    11. V. I. Kolyada, “On embedding $H_p^{\omega_1,\dots,\omega_\nu}$ classes”, Math. USSR-Sb., 55:2 (1986), 351–381  mathnet  crossref  mathscinet  zmath
    12. V. N. Temlyakov, “Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions”, Math. USSR-Izv., 27:2 (1986), 285–322  mathnet  crossref  mathscinet  zmath
    13. È. A. Storozhenko, “On a problem of Hardy-Littlewood”, Math. USSR-Sb., 47:2 (1984), 557–577  mathnet  crossref  mathscinet  zmath
    14. Oswald P., “Spline Approximation in the Lp-Metric, 0 Less-Than-Or-Equal-to P Less-Than-Or-Equal-to 1”, Math. Nachr., 94 (1980), 69–96  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:560
    Russian version PDF:216
    English version PDF:21
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025