Abstract:
The Dirichlet problem
Diaij(xε−1)Djuε(x)=f(x)inΩ,uε(x)|∂Ω=f1(x),
containing a small parameter ε is considered, where the coefficients aij(y) are almost periodic functions in the sense of Besicovitch. An averaged equation having constant coefficients is contracted, and the convergence of uε(x) to the solution u0(x) of the averaged equation is proved. An estimate of the remainder supx∈Ω|uε(x)−u0(x)|⩽Cε is obtained under the condition that there are no anomalous commensurable frequences in the spectrum of the coefficients. For the problem in the whole space a complete asymptotic expansion in powers of ε is constructed.
Bibliography: 12 titles.
Citation:
S. M. Kozlov, “Averaging differential operators with almost periodic, rapidly oscillating coefficients”, Math. USSR-Sb., 35:4 (1979), 481–498
This publication is cited in the following 61 articles:
Nagham Mawassy, S.E. Alavi, Hilal Reda, Jean-Francois Ganghoffer, “Higher gradient homogenization of quasi-periodic media and applications to inclusion-based composites”, Composite Structures, 333 (2024), 117912
S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Metod osredneniya dlya zadach o kvaziklassicheskikh asimptotikakh”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy
matematicheskogo obrazovaniya, SMFN, 70, no. 1, Rossiiskii universitet druzhby narodov, M., 2024, 53–76
Pricila S. Barbosa, Manuel Villanueva‐Pesqueira, “Elliptic equations in weak oscillatory thin domains: Beyond periodicity with boundary‐concentrated reaction terms”, Math Methods in App Sciences, 2024
Alexander N. Vlasov, D. A. Vlasov, G. S. Sorokin, Yulia N. Karnet, “EFFECTIVE STIFFNESS TENSOR OF COMPOSITE MATERIALS WITH INCLUSIONS OF RANDOM SIZE AND PERIODIC LOCATION OF THEIR CENTERS”, Comp Mech Comput Appl Int J, 15:4 (2024), 63
Gang Liu, Runchi Tang, Chi Mu, Xing Liu, Junjian Zhang, “Physical Properties of High-Rank Coal Reservoirs and the Impact on Coalbed Methane Production”, Processes, 12:8 (2024), 1754
Richard Craster, Sébastien Guenneau, Muamer Kadic, Martin Wegener, “Mechanical metamaterials”, Rep. Prog. Phys., 86:9 (2023), 094501
D.I. Borisov, “Homogenization for operators with arbitrary perturbations in coefficients”, Journal of Differential Equations, 369 (2023), 41
Xavier Blanc, Claude Le Bris, MS&A, 21, Homogenization Theory for Multiscale Problems, 2023, 1
Xavier Blanc, Claude Le Bris, MS&A, 21, Homogenization Theory for Multiscale Problems, 2023, 171
Willi Jäger, Antoine Tambue, Jean Louis Woukeng, “Approximation of homogenized coefficients in deterministic homogenization and convergence rates in the asymptotic almost periodic setting”, Anal. Appl., 21:05 (2023), 1311
Niklas Wellander, Sébastien Guenneau, Elena Cherkaev, “Two-scale cut-and-projection convergence for quasiperiodic monotone operators”, European Journal of Mechanics - A/Solids, 100 (2023), 104796
Xavier Blanc, Claude Le Bris, Mathématiques et Applications, 88, Homogénéisation en milieu périodique... ou non, 2022, 189
Xavier Blanc, Claude Le Bris, Mathématiques et Applications, 88, Homogénéisation en milieu périodique... ou non, 2022, 1
Matti Schneider, “A review of nonlinear FFT-based computational homogenization methods”, Acta Mech, 232:6 (2021), 2051
Yao Xu, Weisheng Niu, “Convergence rates in almost-periodic homogenization of higher-order elliptic systems”, ASY, 123:1-2 (2021), 95
Hilal Reda, Nikos Karathanasopoulos, Gérard Maurice, Jean François Ganghoffer, Hassan Lakiss, “Computation of effective piezoelectric properties of stratified composites and application to wave propagation analysis”, Z Angew Math Mech, 100:2 (2020)
Gérard Maurice, Jean-François Ganghoffer, Yosra Rahali, “Second gradient homogenization of multilayered composites based on the method of oscillating functions”, Mathematics and Mechanics of Solids, 24:7 (2019), 2197
S. Koley, P.M. Mohite, C.S. Upadhyay, “Boundary layer effect at the edge of fibrous composites using homogenization theory”, Composites Part B: Engineering, 173 (2019), 106815
Jean-François Ganghoffer, Gérard Maurice, Yosra Rahali, “Determination of closed form expressions of the second-gradient elastic moduli of multi-layer composites using the periodic unfolding method”, Mathematics and Mechanics of Solids, 24:5 (2019), 1475
Zhongwei Shen, Jinping Zhuge, “Approximate correctors and convergence rates in almost-periodic homogenization”, Journal de Mathématiques Pures et Appliquées, 110 (2018), 187