Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1981, Volume 39, Issue 1, Pages 133–143
DOI: https://doi.org/10.1070/SM1981v039n01ABEH001477
(Mi sm2497)
 

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations

V. V. Napalkov
References:
Abstract: It is proved that every continuous function defined on the n-dimensional rectangular parallelepiped {x=(x1,,xn)Rn:0xiai, 1in} can be approximated by polynomials of the form Q(x)=p|α|=0cαxα, where cα=ηαM(α), with p|α|=0|ηα|1. Here M(α) is an arbitrary positive function defined on the set of multi-indices, and lim|α||α|M(α)=.
Bibliography: 9 titles.
Received: 20.03.1979
Bibliographic databases:
UDC: 517.5
MSC: 41A10, 41A63
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations”, Math. USSR-Sb., 39:1 (1981), 133–143
Citation in format AMSBIB
\Bibitem{Nap80}
\by V.~V.~Napalkov
\paper Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 1
\pages 133--143
\mathnet{http://mi.mathnet.ru/eng/sm2497}
\crossref{https://doi.org/10.1070/SM1981v039n01ABEH001477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560468}
\zmath{https://zbmath.org/?q=an:0462.41003|0438.41008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ97300007}
Linking options:
  • https://www.mathnet.ru/eng/sm2497
  • https://doi.org/10.1070/SM1981v039n01ABEH001477
  • https://www.mathnet.ru/eng/sm/v153/i1/p144
  • This publication is cited in the following 3 articles:
    1. I. F. Krasichkov-Ternovskii, G. N. Shilova, “Absolute completeness of systems of exponentials on convex compact sets”, Sb. Math., 196:12 (2005), 1801–1814  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. B. N. Khabibullin, “Stability of Completeness for Systems of Exponentials on Compact Convex Sets in $\mathbb C$”, Math. Notes, 72:4 (2002), 542–550  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. I. F. Krasichkov-Ternovskii, “On absolute completeness of systems of exponentials on a closed interval”, Math. USSR-Sb., 59:2 (1988), 303–315  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:568
    Russian version PDF:182
    English version PDF:19
    References:57
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025