Abstract:
It is proved that every continuous function defined on the n-dimensional rectangular parallelepiped {x=(x1,…,xn)∈Rn:0⩽xi⩽ai,1⩽i⩽n} can be approximated by polynomials of the form Q(x)=∑p|α|=0cαxα, where cα=ηαM(α), with ∑p|α|=0|ηα|⩽1. Here M(α) is an arbitrary positive function defined on the set of multi-indices, and lim|α|→∞|α|√M(α)=∞.
Bibliography: 9 titles.
Citation:
V. V. Napalkov, “Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations”, Math. USSR-Sb., 39:1 (1981), 133–143
\Bibitem{Nap80}
\by V.~V.~Napalkov
\paper Approximation of functions of several variables, taking account of the growth of the coefficients of the approximating combinations
\jour Math. USSR-Sb.
\yr 1981
\vol 39
\issue 1
\pages 133--143
\mathnet{http://mi.mathnet.ru/eng/sm2497}
\crossref{https://doi.org/10.1070/SM1981v039n01ABEH001477}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=560468}
\zmath{https://zbmath.org/?q=an:0462.41003|0438.41008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981LQ97300007}
Linking options:
https://www.mathnet.ru/eng/sm2497
https://doi.org/10.1070/SM1981v039n01ABEH001477
https://www.mathnet.ru/eng/sm/v153/i1/p144
This publication is cited in the following 3 articles:
I. F. Krasichkov-Ternovskii, G. N. Shilova, “Absolute completeness of systems of exponentials on convex compact sets”, Sb. Math., 196:12 (2005), 1801–1814
B. N. Khabibullin, “Stability of Completeness for Systems of Exponentials on Compact Convex Sets in $\mathbb C$”, Math. Notes, 72:4 (2002), 542–550
I. F. Krasichkov-Ternovskii, “On absolute completeness of systems of exponentials on a closed interval”, Math. USSR-Sb., 59:2 (1988), 303–315