Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1983, Volume 44, Issue 3, Pages 299–323
DOI: https://doi.org/10.1070/SM1983v044n03ABEH000969
(Mi sm2471)
 

This article is cited in 9 scientific papers (total in 10 papers)

On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments

R. Sh. Liptser, A. N. Shiryaev
References:
Abstract: The authors study weak convergence of a sequence of semimartingales to an arbitrary stochastically continuous process independent or conditionally independent increments. The “semimartingale scheme” they consider includes the traditional “series scheme”.
Bibliography: 22 titles.
Received: 09.02.1981
Bibliographic databases:
Document Type: Article
UDC: 519.2
MSC: Primary 60F05, 60G17, 60G48; Secondary 46E27, 60G15, 60G25, 60J30
Language: English
Original paper language: Russian
Citation: R. Sh. Liptser, A. N. Shiryaev, “On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments”, Math. USSR-Sb., 44:3 (1983), 299–323
Citation in format AMSBIB
\Bibitem{LipShi81}
\by R.~Sh.~Liptser, A.~N.~Shiryaev
\paper On weak convergence of semimartingales to stochastically continuous processes with independent and conditionally independent increments
\jour Math. USSR-Sb.
\yr 1983
\vol 44
\issue 3
\pages 299--323
\mathnet{http://mi.mathnet.ru/eng/sm2471}
\crossref{https://doi.org/10.1070/SM1983v044n03ABEH000969}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=665687}
\zmath{https://zbmath.org/?q=an:0505.60035|0484.60024}
Linking options:
  • https://www.mathnet.ru/eng/sm2471
  • https://doi.org/10.1070/SM1983v044n03ABEH000969
  • https://www.mathnet.ru/eng/sm/v158/i3/p331
  • This publication is cited in the following 10 articles:
    1. S. O. Sharipov, “Funktsionalnaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa so slabo zavisimoi immigratsiei”, Diskret. matem., 36:1 (2024), 136–148  mathnet  crossref
    2. V. V. Lavrentev, “Slabaya skhodimost gilbertovoznachnykh semimartingalov k stokhasticheski nepreryvnomu protsessu s nezavisimymi prirascheniyami”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2024, no. 1, 5–16  mathnet  crossref  elib
    3. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
    4. V. V. Lavrentev, A. L. Bugrimov, “Usloviya kompaktnosti semeistva mer gilbertovoznachnykh nepreryvnykh semimartingalov”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2019, no. 4, 39–51  mathnet  crossref  elib
    5. E. Mordecki, “Necessary Conditions for Stable Convergenceof Semimartingales”, Theory Probab Appl, 44:1 (2000), 217  mathnet  crossref  mathscinet  isi
    6. A. F. Taraskin, “On the limiting behaviour of the likelihood ratio for semimartingales”, Russian Math. Surveys, 40:2 (1985), 237–238  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. V. V. Lavrent'ev, “On the weak convergence of Hilbert space-valued semimartingales to stochastically continuous processes with conditionally independent increments”, Russian Math. Surveys, 38:3 (1983), 149–150  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. R. Sh. Liptser, A. N. Shiryaev, “Weak convergence of a sequence of semimartingales to a process of diffusion type”, Math. USSR-Sb., 49:1 (1984), 171–195  mathnet  crossref  mathscinet  zmath
    9. Grigelionis B., Mikulevicius R., “On Contiguity and Weak-Convergence of Probability-Measures”, 1021, 1983, 177–194  mathscinet  zmath  isi
    10. B. I. Grigelionis, K. Kubilyus, R. A. Mikulyavichyus, “The martingale approach to functional limit theorems”, Russian Math. Surveys, 37:6 (1982), 41–54  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:508
    Russian version PDF:155
    English version PDF:35
    References:80
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025