Abstract:
The existence and Hölder property in the closure of the domain is proved for the weak and generalized solutions of the Zaremba problem, provided that the domain satisfies a condition of isoperimetric type.
Figures: 2.
Bibliography: 21 titles.
Citation:
A. I. Ibragimov, “Some qualitative properties of solutions of the mixed problem for equations of elliptic type”, Math. USSR-Sb., 50:1 (1985), 163–176
\Bibitem{Ibr83}
\by A.~I.~Ibragimov
\paper Some qualitative properties of solutions of the mixed problem for equations of elliptic type
\jour Math. USSR-Sb.
\yr 1985
\vol 50
\issue 1
\pages 163--176
\mathnet{http://mi.mathnet.ru/eng/sm2283}
\crossref{https://doi.org/10.1070/SM1985v050n01ABEH002739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=717673}
\zmath{https://zbmath.org/?q=an:0599.35051|0545.35030}
Linking options:
https://www.mathnet.ru/eng/sm2283
https://doi.org/10.1070/SM1985v050n01ABEH002739
https://www.mathnet.ru/eng/sm/v164/i2/p168
This publication is cited in the following 2 articles:
Lieberman G., “Pointwise Estimates for Oblique Derivative Problems in Nonsmooth Domains”, J. Differ. Equ., 173:1 (2001), 178–211
V. A. Kondrat'ev, E. M. Landis, Encyclopaedia of Mathematical Sciences, 32, Partial Differential Equations III, 1991, 87