Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 3, Pages 371–389
DOI: https://doi.org/10.1070/SM1995v186n03ABEH000022
(Mi sm22)
 

This article is cited in 6 scientific papers (total in 6 papers)

Conditional limit theorem for products of random matrices

A. V. Letchikov

M. V. Lomonosov Moscow State University
References:
Abstract: Products of independent random matrices with identical densities with respect to the Haar measure on the group of unimodular matrices SL(m,R) are considered. With the standard normalization, the conditional distributions of such products, given that these products belong to some compactum, are shown to converge weakly to the distributions of the Brownian bridge.
Received: 13.10.1994
Bibliographic databases:
UDC: 519.2
MSC: 60F17, 60J05, 60B15
Language: English
Original paper language: Russian
Citation: A. V. Letchikov, “Conditional limit theorem for products of random matrices”, Sb. Math., 186:3 (1995), 371–389
Citation in format AMSBIB
\Bibitem{Let95}
\by A.~V.~Letchikov
\paper Conditional limit theorem for products of random matrices
\jour Sb. Math.
\yr 1995
\vol 186
\issue 3
\pages 371--389
\mathnet{http://mi.mathnet.ru/eng/sm22}
\crossref{https://doi.org/10.1070/SM1995v186n03ABEH000022}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1331809}
\zmath{https://zbmath.org/?q=an:0851.60031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ92200005}
Linking options:
  • https://www.mathnet.ru/eng/sm22
  • https://doi.org/10.1070/SM1995v186n03ABEH000022
  • https://www.mathnet.ru/eng/sm/v186/i3/p65
  • This publication is cited in the following 6 articles:
    1. K. Yu. Zamana, V. Zh. Sakbaev, “Kompozitsii nezavisimykh sluchainykh operatorov i svyazannye s nimi differentsialnye uravneniya”, Preprinty IPM im. M. V. Keldysha, 2022, 049, 23 pp.  mathnet  crossref
    2. R. Sh. Kalmetiev, Yu. N. Orlov, V. Zh. Sakbaev, “Chernoff iterations as an averaging method for random affine transformations”, Comput. Math. Math. Phys., 62:6 (2022), 996–1006  mathnet  mathnet  crossref  crossref
    3. Yu. N. Orlov, V. Zh. Sakbaev, O. G. Smolyanov, “Feynman Formulas and the Law of Large Numbers for Random One-Parameter Semigroups”, Proc. Steklov Inst. Math., 306 (2019), 196–211  mathnet  crossref  crossref  mathscinet  isi  elib
    4. V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups”, Russian Math. (Iz. VUZ), 60:10 (2016), 72–76  mathnet  crossref  mathscinet  isi  elib  elib
    5. V. Yu. Protasov, “Asymptotics of Products of Nonnegative Random Matrices”, Funct. Anal. Appl., 47:2 (2013), 138–147  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    6. V. Yu. Protasov, “Invariant functions for the Lyapunov exponents of random matrices”, Sb. Math., 202:1 (2011), 101–126  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:470
    Russian version PDF:138
    English version PDF:36
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025