Abstract:
The classical solvability of the singular Cauchy problem for the Euler–Poisson–Darboux equation in a homogeneous, globally symmetric space of rank 1 is studied. Starting out from the mean value theorem for spaces of the indicated type, the Darboux and the Euler–Poisson–Darboux equations are introduced. For the Cauchy problem with specific singularity conditions, analogs of Kirchhoff's formulas are derived, i.e. a representation of the solution in terms of spherical means of the initial data is given. The representations so obtained permitted the establishment of necessary and sufficient conditions for the problems under consideration to satisfy Huygens' principle. In particular, Kirchhoff's formulas for the wave equation have been obtained.
Bibliography: 27 titles.
Citation:
I. A. Kipriyanov, L. A. Ivanov, “The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space”, Math. USSR-Sb., 52:1 (1985), 41–51
\Bibitem{KipIva84}
\by I.~A.~Kipriyanov, L.~A.~Ivanov
\paper The Cauchy problem for the Euler--Poisson--Darboux equation in a~symmetric space
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 41--51
\mathnet{http://mi.mathnet.ru/eng/sm2039}
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743056}
\zmath{https://zbmath.org/?q=an:0573.35074}
Linking options:
https://www.mathnet.ru/eng/sm2039
https://doi.org/10.1070/SM1985v052n01ABEH002876
https://www.mathnet.ru/eng/sm/v166/i1/p45
This publication is cited in the following 15 articles:
A. V. Glushak, “Operatornaya funktsiya Makdonalda i nepolnaya zadacha Koshi dlya uravneniya Eilera—Puassona—Darbu”, Materialy mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu v prikladnykh naukakh “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Belgorod, 20–24 avgusta 2019 g., Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 195, VINITI RAN, M., 2021, 35–43
A. V. Glushak, Trends in Mathematics, Transmutation Operators and Applications, 2020, 379
A. V. Glushak, “A Family of Singular Differential Equations”, Lobachevskii J Math, 41:5 (2020), 763
E. L. Shishkina, “Obschee uravnenie Eilera—Puassona—Darbu i giperbolicheskie B-potentsialy”, Uravneniya v chastnykh proizvodnykh, SMFN, 65, no. 2, Rossiiskii universitet druzhby narodov, M., 2019, 157–338
A. V. Glushak, “Uniquely solvable problems for abstract Legendre equation”, Russian Math. (Iz. VUZ), 62:7 (2018), 1–12
V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, Rossiiskii universitet druzhby narodov, M., 2018, 211–426
Sh.T. Karimov, A. K. Urinov, “Reshenie zadachi Koshi dlya chetyrekhmernogo giperbolicheskogo uravneniya s operatorom Besselya”, Vladikavk. matem. zhurn., 20:3 (2018), 57–68
A. V. Glushak, “Abstract Cauchy problem for the Bessel–Struve equation”, Diff Equat, 53:7 (2017), 864
Olevskii M., “An Operator Approach to the Cauchy Problem for the Euler-Poisson-Darboux Equation in Spaces of Constant Curvature”, Integr. Equ. Oper. Theory, 49:1 (2004), 77–109
Denisov V., “On the Stabilization of Means of the Solution of Cauchy-Problem for Hyperbolic-Equations in Symmetrical Spaces”, 315, no. 2, 1990, 266–270
Schimming R., “Laplace-Like Linear-Differential Operators with a Logarithm-Free Elementary Solution”, Math. Nachr., 148 (1990), 145–174
Bugir M., “Conditions of Oscillatory Behavior of the Equations of Lku+C(X,U)=F(X) Kind”, 304, no. 3, 1989, 538–541
Bugir M., “An Approach to Studies in Variability of Partial Equations”, no. 3, 1988, 9–12
Denisov V., “On the Stabilization of Time-Means of the Difference of the Cauchy-Problem Solutions for Hyperbolic-Equations”, 297, no. 1, 1987, 17–22
Denisov V., “Stabilization of Time Means of a Solution of a Cauchy-Problem for a Singular Hyperbolic Equation”, Differ. Equ., 22:1 (1986), 24–33