Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1985, Volume 52, Issue 1, Pages 41–51
DOI: https://doi.org/10.1070/SM1985v052n01ABEH002876
(Mi sm2039)
 

This article is cited in 15 scientific papers (total in 15 papers)

The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space

I. A. Kipriyanov, L. A. Ivanov
References:
Abstract: The classical solvability of the singular Cauchy problem for the Euler–Poisson–Darboux equation in a homogeneous, globally symmetric space of rank 1 is studied. Starting out from the mean value theorem for spaces of the indicated type, the Darboux and the Euler–Poisson–Darboux equations are introduced. For the Cauchy problem with specific singularity conditions, analogs of Kirchhoff's formulas are derived, i.e. a representation of the solution in terms of spherical means of the initial data is given. The representations so obtained permitted the establishment of necessary and sufficient conditions for the problems under consideration to satisfy Huygens' principle. In particular, Kirchhoff's formulas for the wave equation have been obtained.
Bibliography: 27 titles.
Received: 24.05.1982 and 22.12.1983
Bibliographic databases:
UDC: 517.95
MSC: 35Q05, 58G30
Language: English
Original paper language: Russian
Citation: I. A. Kipriyanov, L. A. Ivanov, “The Cauchy problem for the Euler–Poisson–Darboux equation in a symmetric space”, Math. USSR-Sb., 52:1 (1985), 41–51
Citation in format AMSBIB
\Bibitem{KipIva84}
\by I.~A.~Kipriyanov, L.~A.~Ivanov
\paper The Cauchy problem for the Euler--Poisson--Darboux equation in a~symmetric space
\jour Math. USSR-Sb.
\yr 1985
\vol 52
\issue 1
\pages 41--51
\mathnet{http://mi.mathnet.ru/eng/sm2039}
\crossref{https://doi.org/10.1070/SM1985v052n01ABEH002876}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=743056}
\zmath{https://zbmath.org/?q=an:0573.35074}
Linking options:
  • https://www.mathnet.ru/eng/sm2039
  • https://doi.org/10.1070/SM1985v052n01ABEH002876
  • https://www.mathnet.ru/eng/sm/v166/i1/p45
  • This publication is cited in the following 15 articles:
    1. A. V. Glushak, “Operatornaya funktsiya Makdonalda i nepolnaya zadacha Koshi dlya uravneniya Eilera—Puassona—Darbu”, Materialy mezhdunarodnoi konferentsii po matematicheskomu modelirovaniyu v prikladnykh naukakh “International Conference on Mathematical Modelling in Applied Sciences — ICMMAS'19”. Belgorod, 20–24 avgusta 2019 g., Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 195, VINITI RAN, M., 2021, 35–43  mathnet  crossref
    2. A. V. Glushak, Trends in Mathematics, Transmutation Operators and Applications, 2020, 379  crossref
    3. A. V. Glushak, “A Family of Singular Differential Equations”, Lobachevskii J Math, 41:5 (2020), 763  crossref
    4. E. L. Shishkina, “Obschee uravnenie Eilera—Puassona—Darbu i giperbolicheskie B-potentsialy”, Uravneniya v chastnykh proizvodnykh, SMFN, 65, no. 2, Rossiiskii universitet druzhby narodov, M., 2019, 157–338  mathnet  crossref
    5. A. V. Glushak, “Uniquely solvable problems for abstract Legendre equation”, Russian Math. (Iz. VUZ), 62:7 (2018), 1–12  mathnet  crossref  isi
    6. V. V. Katrakhov, S. M. Sitnik, “Metod operatorov preobrazovaniya i kraevye zadachi dlya singulyarnykh ellipticheskikh uravnenii”, Singulyarnye differentsialnye uravneniya, SMFN, 64, no. 2, Rossiiskii universitet druzhby narodov, M., 2018, 211–426  mathnet  crossref
    7. Sh.T. Karimov, A. K. Urinov, “Reshenie zadachi Koshi dlya chetyrekhmernogo giperbolicheskogo uravneniya s operatorom Besselya”, Vladikavk. matem. zhurn., 20:3 (2018), 57–68  mathnet  crossref  elib
    8. A. V. Glushak, “Abstract Cauchy problem for the Bessel–Struve equation”, Diff Equat, 53:7 (2017), 864  crossref
    9. Olevskii M., “An Operator Approach to the Cauchy Problem for the Euler-Poisson-Darboux Equation in Spaces of Constant Curvature”, Integr. Equ. Oper. Theory, 49:1 (2004), 77–109  crossref  mathscinet  zmath  isi
    10. Denisov V., “On the Stabilization of Means of the Solution of Cauchy-Problem for Hyperbolic-Equations in Symmetrical Spaces”, 315, no. 2, 1990, 266–270  mathscinet  isi
    11. Schimming R., “Laplace-Like Linear-Differential Operators with a Logarithm-Free Elementary Solution”, Math. Nachr., 148 (1990), 145–174  crossref  mathscinet  zmath  isi
    12. Bugir M., “Conditions of Oscillatory Behavior of the Equations of Lku+C(X,U)=F(X) Kind”, 304, no. 3, 1989, 538–541  mathscinet  zmath  isi
    13. Bugir M., “An Approach to Studies in Variability of Partial Equations”, no. 3, 1988, 9–12  mathscinet  zmath  isi
    14. Denisov V., “On the Stabilization of Time-Means of the Difference of the Cauchy-Problem Solutions for Hyperbolic-Equations”, 297, no. 1, 1987, 17–22  mathscinet  isi
    15. Denisov V., “Stabilization of Time Means of a Solution of a Cauchy-Problem for a Singular Hyperbolic Equation”, Differ. Equ., 22:1 (1986), 24–33  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:780
    Russian version PDF:277
    English version PDF:23
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025