Loading [MathJax]/extensions/TeX/boldsymbol.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1987, Volume 58, Issue 2, Pages 505–523
DOI: https://doi.org/10.1070/SM1987v058n02ABEH003117
(Mi sm1889)
 

This article is cited in 16 scientific papers (total in 16 papers)

Quasianalytical classes of functions in convex domains

R. S. Yulmukhametov
References:
Abstract: Let D be a bounded convex domain lying in the left-hand half-plane, with 0¯D. A class H(D,Mn), consisting of functions analytic in D and satisfying the inequalities
maxzD|f(n)(z)|CfMn,n=0,1,,
is said to be quasianalytic at z=0 if H(D,Mn) contains no functions that vanish with all their derivatives at z=0.
Let h(φ)=maxλDReλeiφ and h(φ)=0, φ[σ,σ+], and let
Δ+(α)=ασ+(h(α)+ασ+h(θ)dθ),σ+<α<π2,Δ(α)=σα(h(α)+ασh(θ)dθ),π2<α<σ,v1(x)=expxx12πΔ1+(y)+Δ1(y)π+Δ1+(y)Δ1(y)dyy,x0,x1>0.
It is shown that the condition
1lnT(r)v(r)r2dr=+,
where T(r)=suprnM1n is the trace function of the sequence (Mn), and v(r) is the inverse of v1(x), is necessary and sufficient for the quasianalyticity of H(D,Mn).
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when D={z:|argz|<π2γ} the theorem follows from Salinas's results of 1955. For D={z:|z+1|=1} the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.
Received: 30.04.1985
Bibliographic databases:
UDC: 517.548.3
MSC: 26E10, 30B60, 30E10
Language: English
Original paper language: Russian
Citation: R. S. Yulmukhametov, “Quasianalytical classes of functions in convex domains”, Math. USSR-Sb., 58:2 (1987), 505–523
Citation in format AMSBIB
\Bibitem{Yul86}
\by R.~S.~Yulmukhametov
\paper Quasianalytical classes of functions in convex domains
\jour Math. USSR-Sb.
\yr 1987
\vol 58
\issue 2
\pages 505--523
\mathnet{http://mi.mathnet.ru/eng/sm1889}
\crossref{https://doi.org/10.1070/SM1987v058n02ABEH003117}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=867340}
\zmath{https://zbmath.org/?q=an:0625.30037|0617.30041}
Linking options:
  • https://www.mathnet.ru/eng/sm1889
  • https://doi.org/10.1070/SM1987v058n02ABEH003117
  • https://www.mathnet.ru/eng/sm/v172/i4/p500
  • This publication is cited in the following 16 articles:
    1. A. V. Postovalova, “Descriptions of Spaces Strongly Dual to Inductive Limits of Subspaces of \boldsymbol{H(D)}”, Lobachevskii J Math, 45:6 (2024), 2759  crossref
    2. A. V. Lutsenko, I. Kh. Musin, “On space of holomorphic functions with boundary smoothness and its dual”, Ufa Math. J., 13:3 (2021), 80–94  mathnet  crossref  isi
    3. R. A. Gaisin, “Kriterii kvazianalitichnosti tipa Salinasa–Korenblyuma dlya vypuklykh oblastei”, Vladikavk. matem. zhurn., 22:3 (2020), 58–71  mathnet  crossref
    4. Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl, “A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics”, J Geom Anal, 30:4 (2020), 3458  crossref
    5. K. P. Isaev, “Representing systems of exponentials in projective limits of weigth subspaces of A^\infty (D)”, Russian Math. (Iz. VUZ), 63:1 (2019), 24–34  mathnet  crossref  crossref  isi
    6. K. P. Isaev, “Representing exponential systems in spaces of analytical functions”, J. Math. Sci. (N. Y.), 257:2 (2021), 143–205  mathnet  crossref  mathscinet
    7. K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions by series of exponents in normed subspaces of A^\infty(D)”, J. Math. Sci. (N. Y.), 257:3 (2021), 313–328  mathnet  crossref  mathscinet
    8. Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl, “Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes”, Journal of Mathematical Analysis and Applications, 469:1 (2019), 136  crossref
    9. K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions in locally convex subspaces of A^\infty (D) by series of exponentials”, Ufa Math. J., 9:3 (2017), 48–60  mathnet  crossref  isi  elib
    10. R. A. Gaisin, “Quasi-analyticity criteria of Salinas–Korenblum type for general domains”, Ufa Math. J., 5:3 (2013), 28–39  mathnet  crossref  elib
    11. K. V. Trounov, R. S. Yulmukhametov, “Quasi-analytic Carleman classes on bounded domains”, St. Petersburg Math. J., 20:2 (2009), 289–317  mathnet  crossref  mathscinet  zmath  isi  elib
    12. V. V. Napalkov, K. V. Trounov, R. S. Yulmukhametov, “Boundary Uniqueness Theorems in the Carleman Classes and a Dirichlet Problem”, Proc. Steklov Inst. Math., 253 (2006), 115–122  mathnet  crossref  mathscinet  zmath  elib
    13. Napalkov V., Trunov K., Yulmukhametov R., “Uniqueness Boundary Theorems in the Carleman Classes and the Dirichlet Problem”, Dokl. Math., 72:2 (2005), 705–707  mathscinet  zmath  isi  elib
    14. I. Kh. Musin, “A Paley–Wiener type theorem for a weighted space of infinitely differentiable functions”, Izv. Math., 64:6 (2000), 1271–1295  mathnet  crossref  crossref  mathscinet  zmath  isi
    15. I. Kh. Musin, “Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions”, Sb. Math., 191:10 (2000), 1477–1506  mathnet  crossref  crossref  mathscinet  zmath  isi
    16. B. N. Khabibullin, “Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 125–149  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:685
    Russian version PDF:181
    English version PDF:29
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025