Abstract:
Let D be a bounded convex domain lying in the left-hand half-plane, with 0∈¯D. A class H(D,Mn), consisting of functions analytic in D and satisfying the inequalities
maxz∈D|f(n)(z)|⩽CfMn,n=0,1,…,
is said to be quasianalytic at z=0 if H(D,Mn) contains no functions that vanish with all their derivatives at z=0.
Let h(φ)=maxλ∈DReλeiφ and h(φ)=0, φ∈[σ−,σ+], and let
Δ+(α)=√α−σ+(h′(α)+∫ασ+h(θ)dθ),σ+<α<π2,Δ−(α)=−√σ−−α(h′(α)+∫ασ−h(θ)dθ),−π2<α<σ−,v1(x)=exp∫xx12π−Δ−1+(y)+Δ−1−(y)−π+Δ−1+(y)−Δ−1−(y)⋅dyy,x→0,x1>0.
It is shown that the condition
∫∞1lnT(r)v(r)⋅r2dr=+∞,
where T(r)=suprnM−1n is the trace function of the sequence (Mn), and v(r) is the inverse of v1(x), is necessary and sufficient for the quasianalyticity of H(D,Mn).
This theorem generalizes the classical Denjoy–Carleman theorem. In the case when D={z:|argz|<π2γ} the theorem follows from Salinas's results of 1955. For D={z:|z+1|=1} the theorem was proved by Korenblyum in 1965.
Bibliography: 9 titles.
This publication is cited in the following 16 articles:
A. V. Postovalova, “Descriptions of Spaces Strongly Dual to Inductive Limits of Subspaces of \boldsymbol{H(D)}”, Lobachevskii J Math, 45:6 (2024), 2759
A. V. Lutsenko, I. Kh. Musin, “On space of holomorphic functions with boundary smoothness and its dual”, Ufa Math. J., 13:3 (2021), 80–94
R. A. Gaisin, “Kriterii kvazianalitichnosti tipa Salinasa–Korenblyuma dlya vypuklykh oblastei”, Vladikavk. matem. zhurn., 22:3 (2020), 58–71
Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl, “A Phragmén–Lindelöf Theorem via Proximate Orders, and the Propagation of Asymptotics”, J Geom Anal, 30:4 (2020), 3458
K. P. Isaev, “Representing systems of exponentials in projective limits of weigth subspaces of A^\infty (D)”, Russian Math. (Iz. VUZ), 63:1 (2019), 24–34
K. P. Isaev, “Representing exponential systems in spaces of analytical functions”, J. Math. Sci. (N. Y.), 257:2 (2021), 143–205
K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions by series of exponents in normed subspaces of A^\infty(D)”, J. Math. Sci. (N. Y.), 257:3 (2021), 313–328
Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl, “Injectivity and surjectivity of the asymptotic Borel map in Carleman ultraholomorphic classes”, Journal of Mathematical Analysis and Applications, 469:1 (2019), 136
K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representation of functions in locally convex subspaces of A^\infty (D) by series of exponentials”, Ufa Math. J., 9:3 (2017), 48–60
R. A. Gaisin, “Quasi-analyticity criteria of Salinas–Korenblum type for general domains”, Ufa Math. J., 5:3 (2013), 28–39
K. V. Trounov, R. S. Yulmukhametov, “Quasi-analytic Carleman classes on bounded domains”, St. Petersburg Math. J., 20:2 (2009), 289–317
V. V. Napalkov, K. V. Trounov, R. S. Yulmukhametov, “Boundary Uniqueness Theorems in the Carleman Classes and a Dirichlet Problem”, Proc. Steklov Inst. Math., 253 (2006), 115–122
Napalkov V., Trunov K., Yulmukhametov R., “Uniqueness Boundary Theorems in the Carleman Classes and the Dirichlet Problem”, Dokl. Math., 72:2 (2005), 705–707
I. Kh. Musin, “A Paley–Wiener type theorem for a weighted space of infinitely differentiable functions”, Izv. Math., 64:6 (2000), 1271–1295
I. Kh. Musin, “Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions”, Sb. Math., 191:10 (2000), 1477–1506
B. N. Khabibullin, “Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 125–149