Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1989, Volume 64, Issue 1, Pages 295–303
DOI: https://doi.org/10.1070/SM1989v064n01ABEH003308
(Mi sm1742)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions

A. I. Bulgakov
References:
Abstract: Let B be a Banach space with norm , and let (E,M) be a compact topological space with σ-algebra of measurable sets M on which a nonnegative regular Borel measure μ is given. Further, let L1(E,B) be the Banach space of Bochner-integrable functions u:EB, with the norm uL1(E,B)=Eu(t)dμ, and let Φ:K2L1(E,B) be a multivalued mapping and P:KL1(E,B) a single-valued mapping, where K is a compact topological space. Under certain assumptions it is proved that for any ε>0 there exists a continuous mapping g:KL1(E,B) such that the following conditions hold for any xK: g(x)Φ(x), and P(x)g(x)L1(E,B)<ρL1(E,B)[P(x),Φ(x)]+ε, where ρL1(E,B)[,] is the distance in L1(E,B) from a point to a set.
Bibliography: 11 titles.
Received: 13.01.1987
Bibliographic databases:
UDC: 517.965
MSC: Primary 54C65; Secondary 46E30
Language: English
Original paper language: Russian
Citation: A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Math. USSR-Sb., 64:1 (1989), 295–303
Citation in format AMSBIB
\Bibitem{Bul88}
\by A.~I.~Bulgakov
\paper On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 295--303
\mathnet{http://mi.mathnet.ru/eng/sm1742}
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954930}
\zmath{https://zbmath.org/?q=an:0711.46025|0664.46025}
Linking options:
  • https://www.mathnet.ru/eng/sm1742
  • https://doi.org/10.1070/SM1989v064n01ABEH003308
  • https://www.mathnet.ru/eng/sm/v178/i2/p292
  • This publication is cited in the following 9 articles:
    1. O. V. Filippova, “Upravlyaemye differentsialnye uravneniya s parametrom i s mnogoznachnymi impulsnymi vozdeistviyami”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 441–447  mathnet  crossref
    2. L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. A. I. Bulgakov, A. I. Korobko, “K voprosu o suschestvovanii obobschennogo resheniya vozmuschennogo vklyucheniya”, Izv. IMI UdGU, 2006, no. 2(36), 9–12  mathnet
    4. A. I. Bulgakov, O. P. Belyaeva, A. A. Grigorenko, “On the theory of perturbed inclusions and its applications”, Sb. Math., 196:10 (2005), 1421–1472  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Bulgakov A., “Continuous-Selections of Multivalued Mappings and Integral Inclusions with Nonconvex Values and their Applications .1.”, Differ. Equ., 28:3 (1992), 303–311  mathnet  mathscinet  zmath  isi
    6. V. V. Goncharov, A. A. Tolstonogov, “Joint continuous selections of multivalued mappings with nonconvex values, and their applications”, Math. USSR-Sb., 73:2 (1992), 319–339  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    7. A. I. Bulgakov, “Continuous branches of multivalued mappings and functional-differential inclusions with nonconvex right-hand side”, Math. USSR-Sb., 71:2 (1992), 273–287  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    8. Bulgakov A., “Averaging of Functional-Differential Inclusions”, Differ. Equ., 26:10 (1990), 1236–1245  mathnet  mathscinet  zmath  isi
    9. Goncharov V., Tolstonogov A., “On Continuous Selectors and Properties of Solutions of Differential-Inclusions with M-Accretive Operators”, 315, no. 5, 1990, 1035–1039  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:297
    Russian version PDF:86
    English version PDF:27
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025