Abstract:
Let B be a Banach space with norm ‖⋅‖, and let (E,M) be a compact topological space with σ-algebra of measurable sets M on which a nonnegative regular Borel measure μ is given. Further, let L1(E,B) be the Banach space of Bochner-integrable functions u:E→B, with the norm ‖u‖L1(E,B)=∫E‖u(t)‖dμ, and let Φ:K→2L1(E,B) be a multivalued mapping and P:K→L1(E,B) a single-valued mapping, where K is a compact topological space. Under certain assumptions it is proved that for any ε>0 there exists a continuous mapping g:K→L1(E,B) such that the following conditions hold for any x∈K: g(x)∈Φ(x), and ‖P(x)−g(x)‖L1(E,B)<ρL1(E,B)[P(x),Φ(x)]+ε, where ρL1(E,B)[⋅,⋅] is the distance in L1(E,B) from a point to a set.
Bibliography: 11 titles.
Citation:
A. I. Bulgakov, “On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions”, Math. USSR-Sb., 64:1 (1989), 295–303
\Bibitem{Bul88}
\by A.~I.~Bulgakov
\paper On the question of the existence of continuous branches of multivalued mappings with nonconvex images in spaces of summable functions
\jour Math. USSR-Sb.
\yr 1989
\vol 64
\issue 1
\pages 295--303
\mathnet{http://mi.mathnet.ru/eng/sm1742}
\crossref{https://doi.org/10.1070/SM1989v064n01ABEH003308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=954930}
\zmath{https://zbmath.org/?q=an:0711.46025|0664.46025}
Linking options:
https://www.mathnet.ru/eng/sm1742
https://doi.org/10.1070/SM1989v064n01ABEH003308
https://www.mathnet.ru/eng/sm/v178/i2/p292
This publication is cited in the following 9 articles:
O. V. Filippova, “Upravlyaemye differentsialnye uravneniya s parametrom i s mnogoznachnymi impulsnymi vozdeistviyami”, Vestnik rossiiskikh universitetov. Matematika, 25:132 (2020), 441–447
L. I. Danilov, “Shift dynamical systems and measurable selectors of multivalued maps”, Sb. Math., 209:11 (2018), 1611–1643
A. I. Bulgakov, A. I. Korobko, “K voprosu o suschestvovanii obobschennogo resheniya vozmuschennogo vklyucheniya”, Izv. IMI UdGU, 2006, no. 2(36), 9–12
A. I. Bulgakov, O. P. Belyaeva, A. A. Grigorenko, “On the theory of perturbed inclusions and its applications”, Sb. Math., 196:10 (2005), 1421–1472
Bulgakov A., “Continuous-Selections of Multivalued Mappings and Integral Inclusions with Nonconvex Values and their Applications .1.”, Differ. Equ., 28:3 (1992), 303–311
V. V. Goncharov, A. A. Tolstonogov, “Joint continuous selections of multivalued mappings with nonconvex values, and their applications”, Math. USSR-Sb., 73:2 (1992), 319–339
A. I. Bulgakov, “Continuous branches of multivalued mappings and functional-differential inclusions with nonconvex right-hand side”, Math. USSR-Sb., 71:2 (1992), 273–287
Bulgakov A., “Averaging of Functional-Differential Inclusions”, Differ. Equ., 26:10 (1990), 1236–1245
Goncharov V., Tolstonogov A., “On Continuous Selectors and Properties of Solutions of Differential-Inclusions with M-Accretive Operators”, 315, no. 5, 1990, 1035–1039